期刊文献+

概周期驱动分段Logistic系统的奇异非混沌吸引子 被引量:3

Strange Nonchaotic Attractors in Quasiperiodically Piecewise Logistic System
下载PDF
导出
摘要 鉴于对非光滑系统奇异非混沌吸引子(SNAs)的形成原因与诞生机理的认识尚不清楚,以概周期驱动分段Logistic非光滑系统为研究对象,分析此系统中存在的多种类型的奇异非混沌吸引子,通过应用最大李雅普诺夫指数、相敏感指数方法辨识了奇异非混沌吸引子的诞生机理,主要包括Heagy-Hammel路线、间歇-Ⅰ路线、分形化路线,研究结果发现,奇异非混沌吸引子在非光滑系统中的存在类型比较丰富.研究结果可为研究非光滑系统中的奇异非混沌吸引子提供理论参考. It is not clear that the current understanding of the formation and mechanism of nonsmooth system for strange nonchaotic attractors(SNAs).We focuses on the quasiperiodic driven for Logistic system,aiming to analyze the various types of strange nonchaotic driven piecewise Logistic attractors by applying the largest Lyapunov exponents and phase-sensitive exponents in this system.It mainly includes the Heagy-Hammel routes,the type-I intermittency routes and the fractalization routes.The results of the study show that these types of strange nonchaotic attractors are abundant in nonsmooth systems and the results provide a theoretical basis for the study of strange nonchaotic attractors in nonsmooth systems.
作者 沈云柱 张凡辉 东广霞 SHEN Yunzhu;ZHANG Fanhui;DONG Guangxia(School of Mathematical Sciences,University of Jinan,Shandong Jinan 250022,China;School of Sports,Shandong Sport University,Shandong Jinan 250022,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2019年第3期207-212,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11732014)
关键词 非光滑系统 奇异非混沌吸引子 最大李雅普诺夫指数 相敏感指数 nonsmooth system strange nonchaotic attractor the largest Lyapunov exponent phase sensitivity exponent
  • 相关文献

参考文献1

二级参考文献26

  • 1GREBOGI C, OTT E, PELIKAN S, et al. Strange Attractors That Are Not Chaotic [J ]. Physica D, 1984,13 : 261-268. 被引量:1
  • 2YALCINKAYA T, LAI Y C. Blowout Bifurcation Route to Strange Nonchaotic Attractors [J ]. Phys Rev Lett, 1996,77 : 5 039- 5 042. 被引量:1
  • 3PRASAD A, MEHRA V, RAMASWAMY R. Intermittency Route to Strange Nonchaotic Attractors [J]. Phys Rev Lett, 1997, 79:4 127-4 130. 被引量:1
  • 4KIM S Y, LIM W,OTT E. Mechanism for the Intermittent Route to Strange Nonchaotie Attractors [J]. Phys Rev,2003 ,E67 : 056203-056207. 被引量:1
  • 5NISHIKAWA T,KANEKO K. Fractalization of a Torus as a Strange Nonchaotic Attractor [ J ]. Phys Rev, 1996, E54:6 114- 6 124. 被引量:1
  • 6FAHY S,HAMANN D R. Transition from Chaotic to Nonchaotie Behavior in Randomly Driven Systems [J ]. Phys Rev Lett, 1992,69 : 761-764. 被引量:1
  • 7KUZNETSOV S P. Torus Fractalization and Intermittency [J ]. Phys Rev, 2002, E65:066209-066221. 被引量:1
  • 8LAI Y C. Transition from Strange Nonchaotic to Strange Chaotic Attractors [J]. Phys Rev, 1996 ,E53:57-65. 被引量:1
  • 9DATTA S, RAMASWAMY R, PRASAD A. Fractalization Route to Strange Nonehaotic Dynamics [ J ]. Phys Rev, 2004, E70: 046203-046212. 被引量:1
  • 10HEAGY J F, HAMMEL S M. The Birth of Strange Nonchaotic Attractors [J ]. Physica D, 1994,70:140-153. 被引量:1

共引文献3

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部