期刊文献+

统计学习与支持向量机 被引量:3

Statistics Learning and Support Vector Machine
下载PDF
导出
摘要 支持向量机 (SVM)是一类新型机器学习方法 ,其理论基础是统计学习理论 ,由于其出色的学习性能而成为当前国际机器学习领域的研究热点。该文首先阐述统计学习的核心内容 ,然后对 SVM及其应用进行研究 ,最后讨论了 SVM is a novel approach of machine learnin g, which is based on Statistics Learning. It becomes a study focus in the intern ati onal machine learning. At first,key content of Statistics Learning is expatiated in this paper,then SVM and its application is studied. At last, deficiency of SV M and its future study content is discussed.
作者 牟廉明
出处 《内江师范学院学报》 2002年第6期3-7,共5页 Journal of Neijiang Normal University
关键词 支持向量机 统计学习理论 机器学习 学习方法 小样本统计 support vector machine statistics learning machi ne learning
  • 相关文献

参考文献8

  • 1[2]Cortes C,Vapnik V. Support-vector networks. Machine Learning[J]. 1995,20: 273~ 297. 被引量:1
  • 2[3]Lu Chunyu,Yan Pingfan, Zhang Changshui, Zhou Jie. Face recognition using support vector machine[C]. In : Proc. of ICANN'98, Beijing, 1998,652~ 655. 被引量:1
  • 3[4]By Marti A. Hearst. Suppor vector machine[J]. IEEE INTELLIGENCE SYSTEMS. 被引量:1
  • 4[5]Thorsten Joachims. A Statistical Learning Model of Text Classification for Support Vector Machines[J]. European Conference on Machine Learning(ECML),1998. 被引量:1
  • 5[6]Torsten Joachims. Transductive Inference for Text Classifiction Using Support Vector Machined[J]. Intermational Conference on Machine Learning(ICML), 1999. 被引量:1
  • 6[7]Thorsten Joachims. Making Large-Scale SVM Learning Practical [J]. In: Scholkopf B, Burges C J C, smola Aeds, Advances in Kermel Methods - Support Vector Learning, Cambridge, MA:MIT Press, 1998 : 169~ 184. 被引量:1
  • 7[8]Platt J C. Using Sparaseness and Analysis QP to Speed Training of Support Vector Machine[J].In: Kearns MS, Solla S A, Cohn D A eds, Advance in Neural Information Processing Systems (volume 11 ),Cambridge, MA : MIT Press, 1999. 被引量:1
  • 8[9]Danny Roobaert & Marc M. Van Hulle. View-based 3D object recognition with Support Vector Machines[J]. Proc. IEEE Neural Networks for Signal Processing Workshop, 1999. 被引量:1

同被引文献34

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部