摘要
设H是实Hilbert空间,T:H→2H为极大单调算子.主要用逼近技巧证明了迭代序列{xn}:xn+1=anx+(1-an)yn+en,n=0,1,2,…(其中x0=x∈H,{an},{rn},{en}满足某条件||yn-Jrnxn||≤δn,∑δn<∞,Jrn=(I+rnT)-1)的强收敛定理,并且给出了其应用的实例.
Let H be a real Hilbert space and let T: H-2H be a maximal monotone operator. Prove mainly the strongly convergence theorem of the iterative sequence {xn}: xn + 1 = anx + (1 - an)yn + en , n = 0,1,2,…,(where X0 = x ∈ H,{ an } , | rn | and {en } satisfies certain conditions, || yn - Jr xn || <Jr = (I + rnT)-1.) by virtue of approximating techniques and give its application.
出处
《河北师范大学学报(自然科学版)》
CAS
2003年第1期19-23,共5页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金资助项目(96302017)
军械工程学院基金资助项目(2000yjj08)