摘要
首先介绍了格阵中可平移铺砌元(Translational Lattice Prototile简记为TLP)和可旋转铺砌元(Rotational Lattice Prototile简记为RLP)的概念;然后通过对平行四边形各边最近点的研究,由保持格阵不变的仿射变换得到了所有平行四边形的TLP;给出无水平和竖直边的格点三角形是RLP的充分必要条件为其生成四边形无新格点,而且是TLP.
Two definitions are given: translational lattice prototiles(TLP) and rotational lattice pro-totiles(RLP). Then the nearest point of each side of the parallelogram are discussed. By lattice-preserving affine transformations, all parallelogram TLP are obtained, and give the result that a lattice triangle without horizontal or vertical sides to be an RLP if and only if its generating parallelogram.have not new points and is a TLP.
出处
《河北师范大学学报(自然科学版)》
CAS
2003年第1期15-18,23,共5页
Journal of Hebei Normal University:Natural Science