摘要
Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate(LN) have gained much attention. However, the implementation of LiNbO_3 in real devices is not a trivial task due to difficulties in manufacturing and handling thin-film LN. In this study, we investigate an optical device where the Bloch surface wave(BSW) propagates on the thin-film LN to unlock its properties. First, access to the LN film from air(or open space) is important to exploit its properties. Second, for sustaining the BSW, one-dimensional photonic crystal(1DPhC) is necessary to be fabricated under the thin-film LN. We consider two material platforms to realize such a device: bulk LN and commercial thin-film LN. Clear reflectance dips observed in far-field measurements demonstrate the propagation of BSWs on top of the LN surface of the designed 1DPhCs.
Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate(LN) have gained much attention. However, the implementation of LiNbO_3 in real devices is not a trivial task due to difficulties in manufacturing and handling thin-film LN. In this study, we investigate an optical device where the Bloch surface wave(BSW) propagates on the thin-film LN to unlock its properties. First, access to the LN film from air(or open space) is important to exploit its properties. Second, for sustaining the BSW, one-dimensional photonic crystal(1DPhC) is necessary to be fabricated under the thin-film LN. We consider two material platforms to realize such a device: bulk LN and commercial thin-film LN. Clear reflectance dips observed in far-field measurements demonstrate the propagation of BSWs on top of the LN surface of the designed 1DPhCs.
基金
Collgium SMYLE(SMart SYstems for a better LifE)
Agence Nationale de la Recherche(ANR)ASTRID project Esencyal(ANR-13-ASTR-0019-01)
French RENATECH Network
FEMTO-ST Technological Facility