期刊文献+

Image lithography in telluride suboxide thin film through controlling “virtual” bandgap 被引量:1

Image lithography in telluride suboxide thin film through controlling “virtual” bandgap
原文传递
导出
摘要 In this work, TeO_(0.7)thin films were prepared by the reactive magnetron-controlling sputtering method. Complex gray-scale patterns were successfully fabricated on TeO_(0.7)thin films through the laser direct writing method.The structural origin of TeO_(0.7)thin film was investigated for gray-scale pattern formation. It is found that multiple gray-scale levels are dependent on the "virtual" bandgap energy of TeO_(0.7)thin films. The bandgap energy changes lead to refractive index and reflectivity difference. Thus, gray-scale tones can be formed. By accurately controlling laser energy, various "virtual" bandgaps can be generated in TeO_(0.7)thin films, and colorful gray-scale levels can be formed. Experimental results indicate that TeO_(0.7)thin film can be used as micro/nano image writing material. In this work, TeO0.7 thin films were prepared by the reactive magnetron-controlling sputtering method. Complex gray-scale patterns were successfully fabricated on TeO0.7 thin films through the laser direct writing method. The structural origin of TeO0.7 thin film was investigated for gray-scale pattern formation. It is found that multiple gray-scale levels are dependent on the 'virtual' bandgap energy of TeO0.7 thin films. The bandgap energy changes lead to refractive index and reflectivity difference. Thus, gray-scale tones can be formed. By accurately controlling laser energy, various 'virtual' bandgaps can be generated in TeO0.7 thin films, and colorful gray-scale levels can be formed. Experimental results indicate that TeO0.7 thin film can be used as micro/nano image writing material. (C) 2016 Chinese Laser Press
出处 《Photonics Research》 SCIE EI 2017年第1期22-26,共5页 光子学研究(英文版)
基金 National Natural Science Foundation of China(NSFC)(51672292,61627826,61137002)
  • 相关文献

参考文献2

二级参考文献33

  • 1S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968). 被引量:1
  • 2M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007). 被引量:1
  • 3S. Raoux, W. Welnic, and D. Ielmini, Chem. Rev. 110, 240(2010). 被引量:1
  • 4S. R. Ovshinsky, Disordered Materials: Science and Technology (Amorphous Institute Press, 1982). 被引量:1
  • 5S. R. Ovshinsky, Mater. Res. Soc. Sym. Proc. 554, 399 (1998). 被引量:1
  • 6E. Mytilineou, S. R. Ovshinsky, B. Pashmakov, D. Strand, and D. Jablonski, J. Non-Cryst. Solids 352, 1991 (2006). 被引量:1
  • 7T. Tsujioka and M. Irie, Appl. Opt. 37, 4419 (1998). 被引量:1
  • 8P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009). 被引量:1
  • 9P. Hosseini, C. D. Wright, and H. Bhaskaran, Nature 511, 206(2014). 被引量:1
  • 10F. F. Schlich, P. Zalden, A. M. Lindenberg, and R. Spolenak, ACS Photon. 2, 178 (2015). 被引量:1

共引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部