摘要
An optical vortex having an isolated point singularity is associated with the spatial structure of light waves.A polarization vortex(vector beam) with a polarization singularity has spatially variant polarizations. A phase vortex with phase singularity or screw dislocation has a spiral phase front. The optical vortex has recently gained increasing interest in optical trapping, optical tweezers, laser machining, microscopy, quantum information processing, and optical communications. In this paper, we review recent advances in optical communications using optical vortices. First, basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization/phase vortex generation and(de)multiplexing are introduced. Second, free-space and fiber optical communications using optical vortex modulation and optical vortex multiplexing are presented. Finally, key challenges and perspectives of optical communications using optical vortices are discussed. It is expected that optical vortices exploiting the space physical dimension of light waves might find more interesting applications in optical communications and interconnects.
An optical vortex having an isolated point singularity is associated with the spatial structure of light waves.A polarization vortex(vector beam) with a polarization singularity has spatially variant polarizations. A phase vortex with phase singularity or screw dislocation has a spiral phase front. The optical vortex has recently gained increasing interest in optical trapping, optical tweezers, laser machining, microscopy, quantum information processing, and optical communications. In this paper, we review recent advances in optical communications using optical vortices. First, basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization/phase vortex generation and(de)multiplexing are introduced. Second, free-space and fiber optical communications using optical vortex modulation and optical vortex multiplexing are presented. Finally, key challenges and perspectives of optical communications using optical vortices are discussed. It is expected that optical vortices exploiting the space physical dimension of light waves might find more interesting applications in optical communications and interconnects.
基金
National Basic Research Program of China(973Program)(2014CB340004)
National Natural Science Foundation of China(NSFC)(11274131,11574001,61222502)
National Program for Support of Top-Notch Young Professionals
Program for New Century Excellent Talents in University(NCET)(NCET-11-0182)
Wuhan Science and Technology Plan Project(2014070404010201)
Open Program from State Key Laboratory of Advanced Optical Communication Systems and Networks(2016GZKF0JT007)
Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company(YOFC)(SKLD1504)