摘要
The CuO_x thin film photocathodes were deposited on F-doped Sn O_2 (FTO)transparent conducting glasses by alternating current(AC)magnetron reactive sputtering under different Ar:O_2 ratios.The advantage of this deposited method is that it can deposit a CuO_x thin film uniformly and rapidly with large scale.From the photoelectrochemical(PEC)properties of these CuO_x photocathodes,it can be found that the CuO_x photocathode with Ar/O_2 30:7 provide a photocurrent density ofà3.2 m A cm^(à2)under a bias potentialà0.5 V(vs.Ag/Ag Cl),which was found to be twice higher than that of Ar/O_2 with 30:5.A detailed characterization on the structure,morphology and electrochemical properties of these CuO_x thin film photocathodes was carried out,and it is found that the improved PEC performance of CuO_x semiconductor photocathode with Ar/O_230:7 attributed to the less defects in it,indicating that this Ar/O_230:7 is an optimized condition for excellent CuO_x semiconductor photocathode fabrication.
The CuO_x thin film photocathodes were deposited on F-doped Sn O_2 (FTO)transparent conducting glasses by alternating current(AC)magnetron reactive sputtering under different Ar:O_2 ratios.The advantage of this deposited method is that it can deposit a CuO_x thin film uniformly and rapidly with large scale.From the photoelectrochemical(PEC)properties of these CuO_x photocathodes,it can be found that the CuO_x photocathode with Ar/O_2 30:7 provide a photocurrent density ofà3.2 m A cm^(à2)under a bias potentialà0.5 V(vs.Ag/Ag Cl),which was found to be twice higher than that of Ar/O_2 with 30:5.A detailed characterization on the structure,morphology and electrochemical properties of these CuO_x thin film photocathodes was carried out,and it is found that the improved PEC performance of CuO_x semiconductor photocathode with Ar/O_230:7 attributed to the less defects in it,indicating that this Ar/O_230:7 is an optimized condition for excellent CuO_x semiconductor photocathode fabrication.
基金
financially supported by the National Natural Science Foundation of China (Grant Nos. 41506093)