摘要
准确预测井筒积液是优化气井配产的基础。本文通过理论分析建立了考虑液滴尺寸和液滴变形影响的气井连续携液预测新模型。该模型基于液滴总表面自由能与气相总湍流动能的相等关系确定最大液滴直径,通过受力分析建立了基于椭球形液滴假设的临界携液流速计算表达式,提出了基于能量守恒的变形参数与临界韦伯数函数关系式,并引入了具有较高精度的曳力系数和椭球表面积计算公式。结合实际气井情况,将本文建立的气井连续携液预测模型与现有的模型进行了对比和验证。结果表明本文模型的预测结果与气井实际状态吻合较好,能够对低产有水气井的井底积液状况进行有效预测。
Accurate prediction of liquid loading is the basis of proration optimization in gas well production. A new prediction model for continuous liquid-carrying in gas wells is proposed in this paper, which takes into account the influence of liquid-droplet size and liquid-droplet deformation.In this model, the maximum droplet diameter was determined based on the equal relationship between total surface free energy of droplets and total turbulent kinetic energy of gas phase. A critical liquid-carrying velocity formula for ellipsoidal droplet is established by analyzing the droplet force balance. An energy conservation-based functional relation between deformation parameter and critical Weber number was proposed. The drag coefficient and ellipsoid surface area formulas with high precision were introduced in the model. The present and the existing continuous liquid-carrying models are compared and validated with the actual gas well data. The results show that the present model agrees well with the actual state of the gas wells, implying the present model can predict the liquid loading in gas wells effectively.
作者
潘杰
王武杰
魏耀奇
陈军斌
王亮亮
PAN Jie;WANG Wu-Jie;WEI Yao-Qi;CHEN Jun-Bin;WANG Liang-Liang(College of Petroleum Engineering/Post-doctoral Innovation Base,Xi’an Shiyou University,Xi'an 710065,China;Post-doctoral Research Station of Oil and Gas Engineering,China University of Petroleum,Beijing 102249,China;Fourth Gas Production Plant,PetroChina Changqing Oilfield Company,Erdos 017300,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2019年第3期579-586,共8页
Journal of Engineering Thermophysics
基金
国家自然科学基金项目(No.51774237
No.51304160)
陕西省博士后科研项目(No.2016BSHEDZZ25)
陕西省教育厅科研计划项目(No.15JK1581)
关键词
井底积液
连续携液
液滴尺寸
液滴变形
临界携液流速
liquid loading
continuous liquid-carrying
liquid-droplet size
liquid-droplet deformation
critical liquid-carrying velocity