期刊文献+

基于Martini力场的表面活性剂溶液粗粒化分子模拟 被引量:5

Coarse-grained Molecular Dynamics Simulation for Surfactant Aqueous Solution Based on the martini Force Field
原文传递
导出
摘要 本文采用基于Martini力场的粗粒化分子动力学模拟方法,对表面活性剂水溶液在Couette流动过程中的流变性进行研究。研究结果表明:剪切黏度随着表面活性剂浓度和摩尔比的增加而增加,随着温度和剪切速率的增加而减小;在大剪切率时,溶液中最长胶束的分子数目随温度和剪切速率的增加而减少,对应于剪切黏度的减小;最长胶束的分子数目大小在不同反离子盐溶液中顺序为:N_(CTAC/NamSal)>N_(CTAC/NaSal)>N_(CTAC/NaCl),对应溶液剪切黏度η_(CTAC/NaCl)<η_(CTAC/NaSal)<η_(CTAC/NamSal)。 The rheological behaviors in a binary system of cetyltrimethylammonium chloride(CTAC)and sodium salicylate(NaSal) under Couette flow were studied by molecular dynamics simulations using the coarse-grained MARTINI force field and explicit CG water solvent. The results show that, while the CTAC concentration and molar ratio increase, the shear viscosity increases;but the shear viscosity decreases with the temperature increasing. On condition of high shear rate condition,for the relationship between shear viscosity and the molecule number of the final longest micelle,the molecular number of the final longest micelle decreases with the temperature and shear rate increasing, corresponding to the decreasing of shear viscosity. The molecular number of the final longest micelle on the three binary systems(CTAC/NaCl, CTAC/NaSal, CTAC/NamSal) ranks as follows: NCTAC/NamSal> NCTAC/NaSal> NCTAC/NaCl, and the shear viscosity of the three systems can be ranked as ηCTAC/NaCl<ηCTAC/NaSal<ηCTAC/NamSal.
作者 刘飞 刘冬洁 周文静 陈飞 魏进家 LIU Fei;LIU Dong-Jie;ZHOU Wen-Jing;CHEN Fei;WEI Jin-Jia(State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi'an 710049,China;School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi'an 710049,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第2期350-356,共7页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51225601 No.51636006)
关键词 表面活性剂溶液 Martini力场 COUETTE流动 剪切黏度 surfactant aqueous solution martini force field couette flow shear viscosity
  • 相关文献

参考文献3

二级参考文献44

  • 1TOMS B A. Some observation on the flow of linear poly- mer solutions through straight tubes at large Reynolds number[ C]//Proceedings of the first International Con- gress of Rheology. North Holland: [ s. n. ] , 1949: 135 - 141. 被引量:1
  • 2BEWERSDPRFF H W, OHLENDORF D. The behavior of dragreducing cationic surfactant solutions[ J]. Journal of Colloid and Polymer, 1985, 266(10) : 941 -955. 被引量:1
  • 3KAWAGUCHI Y, SEGAWA T, FENG Z P, et al. Ex- perimental study on drag-reducing channel flow with sur- faetant additives-spatial structure of turbulence investiga- ted by PIV system[ J]. International Journal of Heat and Fluid Flow, 2002, 23 (5) : 700 - 709. 被引量:1
  • 4LI F C, KAWAGUCHI Y, SEGAWA T, et al. Reyn- olds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investiga- ted by particle image velocimetry [ J ]. Physics of Flu- ids, 2005, 17(7): 1-13. 被引量:1
  • 5LUMLEY J L. Drag reduction by additives [ J ]. Annual Review of Fluid Mechanics, 1967 ( 1 ) : 367 - 384. 被引量:1
  • 6PINHO F T, WHITELAW J H. Flow of non-newtonian fluids in a pipe [ J ]. Journal of Non-Newtonian Fluid Mechanics, 1990, 34: 129- 144. 被引量:1
  • 7TABOR M, DE GENNES P G. A cascade theory of drag reduction[J]. Europhysics Letter, 1986, 2(7): 519- 522. 被引量:1
  • 8LUCHIK T S, TIEDERMAN W G. Turbulent structures in low-concentration drag-reducing channel flows [ J ]. Journal of Fluid Mechanics, 1988, 190(5) : 241 -263. 被引量:1
  • 9WEI T, WILLMARTH W W. Modifying turbulent struc- ture with drag-reducing polymer additives in turbulent channel flows [ J ]. Journal of Fluid Mechanics, 1992, 245:619-641. 被引量:1
  • 10BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows [ J ]. Annual Review of Fluid Mechanics, 1993, 25 : 539 -575. 被引量:1

共引文献5

同被引文献45

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部