摘要
针对薄宽带钢生产过程中出现的任意位置局部型瓢曲浪形缺陷,考虑平直段边界弹性约束作用及其所储存的应变能,应用能量变分法建立了任意位置局部非均匀载荷作用下屈曲变形的解析计算模型,获得了屈曲临界载荷的表达式,并基于驻值势能原理对屈曲变形区域进行搜索求解,得到了临界条件。应用ABAQUS有限元对任意位置局部浪形进行仿真计算,获得了屈曲模态及临界条件,验证了屈曲解析计算模型的准确性。在此基础上,分析了屈曲临界条件与弹性约束系数、屈曲区域中心距带钢自由边垂直距离、非均匀载荷半宽以及平均张应力之间的关系,并指出带钢不产生屈曲区域超出带钢板宽的任意位置局部浪形时,相同初始条件下任意位置的局部浪形屈曲临界条件计算结果都相同。
The analytical calculation of local arbitrary buckling deformation under a local arbitrary non-uniform load is established by using an energy variational method which considers the elastic restraint of the flat part on the buckling region and its strain energy. On the basis of the principle of stationary potential energy, the critical conditions are obtained by searching the buckling region. The simulation calculation is developed by the ABAQUS finite element method(FEM) and the mode of local arbitrary buckling and critical conditions, which are verified by the analytical method, are obtained. Factors affecting the buckling critical conditions, such as the elastic restrained coefficient, the distance between the center of the buckling region and the free edge, the width of non-uniform load, and average tension are analyzed. Results show that the critical conditions of local arbitrary buckling are the same under the same initial conditions when the buckling region does not exceed the width of the strip.
出处
《工程力学》
EI
CSCD
北大核心
2015年第S1期33-38,共6页
Engineering Mechanics
基金
国家科技支撑计划项目(2011BAE13B05)
国家自然科学基金项目(51075031)
关键词
薄宽带钢
任意位置
局部浪形
弹性约束
屈曲
解析法
有限元法
thin and wide strip
arbitrary
local buckling
elastic restraint
buckling
analytical method
FEM