摘要
本文在生成的二维离散裂隙网络中利用逾渗理论突出裂隙的主干网,保存了明显的优势流路径。在此基础上,基于渗流的连续性方程和立方定律,在稳定的、单相的、完全饱和的渗流系统使用DFN模型研究随机产生的裂隙网络中的流体流动。利用matlab程序实现了裂隙岩体渗流数值模拟,在该模型中使用导水系数而非Priest的孔径,且导水系数服从对数正态分布实现了离散裂隙网络模拟的非均质性;在随机的Monte Carlo模拟中,进行了总流量的预测。模拟实验结果表明:总流量的变异系数在合理的范围内,该方法为裂隙水的稳定渗流计算提供了简单、实用的计算方法。
Percolation theory is utilized to highlight the backbone substructure of two-dimensional discrete fracture network( DFN) and the distinct preferential flow paths are preserved. Based on the seepage continuity equation and cubic law,the fluid flow in randomly generated fracture network is studied by DFN model for a fully saturated flow system presumed in a steady state and single phase. Numerical simulation for seepage in rock masses is realized with matlab programme,the fracture transmissivity assumed following a lognormal distribution is employed in the model instead of using an aperture distribution in Priest 's model. The transmissibility coefficient obeying logarithm gaussian distribution could ensure heterogeneity of seepage. The total flow is estimated by random Monte Carlo simulation. The results from simulation experiment demonstrate that the variation coefficient of DFN flow rate is within a reasonable range,the approach provides a simple,applicable calculation method for fracture groundwater.
出处
《工程勘察》
2015年第4期44-48,共5页
Geotechnical Investigation & Surveying
基金
国家自然科学基金项目(41101018
51190090)资助
关键词
裂隙岩体
DFN模型
连通网络
地下水渗流
非均质
fractured rock mass
DFN model
connected network
groundwater seepage
heterogeneity