摘要
研究了一类具变号系数的时滞微分方程的渐近性,这类时滞微分方程不满足Yorke等提出的3/2稳定定理的条件.利用积分区域划分等分析技巧,得到了这类时滞微分方程解收敛于零的充分条件,最后举例说明结论的有效性.
This paper considers the asymptotic behavior of delay differential equation with oscillatory coefficients,and the equation does not satisfy Yorke's 3/2 stability theorems. By analytic technique including decomposition of domain of integration, a sufficient condition of convergence of solutions of delay differential equation is obtained. A example is also worked out which demonstrate the effectiveness of the proposed result.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第4期409-412,共4页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金资助项目(60074008)
高等学校博士点基金资助项目(20010487005)
湖北省教育厅重大科学研究基金资助项目(2001Z06003).