摘要
针对配电网部件热故障判别前置任务,提出一种面向配电网巡检的多模态图像部件定位方法。该方法包括多模态图像信息协同与目标检测两个关键步骤:首先,针对高分辨率可见光图像与带有温度信息的红外图像信息不对齐问题,提出自适应图像配准方法,该方法能够高质量完成跨模态配准任务;其次,通过预测信息迁移方法将配准后可见光图像的预测信息迁移至红外图像,完成对红外图像的检测。结果表明,相比直接检测红外图像,提出的方法能够提高18.4%的检测精度,并在精确率与召回率上表现极佳。
A multi⁃modal image component localization method for distribution network inspection is proposed for the task of thermal fault discrimination of distribution network components.The method includes two key steps that is multi⁃modal image information coordination and object detection.Firstly,a self⁃adaptive image registration method is proposed to address the issue of misalignment between high⁃resolution visible light images and infrared images with temperature information,which can complete high⁃quality cross modal registration tasks.Secondly,the prediction information of the registered visible image is transferred to the infrared image by the prediction information transfer method to complete the detection of the infrared image.The results show that compared with direct detection of infrared images,the proposed method can improve detection accuracy by 18.4%and performs extremely well in terms of precision and recall.
作者
黄志鸿
颜星雨
陶岩
张辉
徐先勇
HUANG Zhihong;YAN Xingyu;TAO Yan;ZHANG Hui;XU Xianyong(State Grid Hunan Electric Power Company Limited Research Institute,Changsha 410208,China;Hunan Xiangdian Test and Research Institute Co.,Ltd.,Changsha 410208,China;School of Robotics,Hunan University,Changsha 410082,China;School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China)
出处
《湖南电力》
2024年第6期83-89,共7页
Hunan Electric Power
基金
湖南省杰出青年科学基金(2021JJ10025)
国网湖南省电力有限公司科技项目(5216A522001Y)
湖南省科技人才托举工程-“小荷”科技人才项目(2023TJ-X48)。
关键词
电力巡检
图像配准
目标检测
多模态
深度学习
electrical inspection
image registration
object detection
multimodal
deep learning