摘要
镁(含镁)系储氢材料作为固态储氢技术的工作介质,具有高重量储氢密度和高体积储氢密度的突出优势,但其吸/放氢温度高、速率慢、可逆性差等难点问题一直没有得到有效解决,严重阻碍了其实际应用。按照化学键性质的区别,镁(含镁)系储氢材料可分为合金和配位化合物两大类。过去几十年的研究工作主要集中在通过改变成分和结构、加入掺杂(催化)剂、构建微纳结构和失稳体系等手段来解决这些问题。但从实际效果上来看,在改善动力学方面的进展要大于热力学方面,使用镁(含镁)系储氢材料的过程中仍需要通过传统电加热的方式提供额外能量,以克服吸/放氢反应的热力学和动力学能垒,这导致了能量转化效率降低。最新的研究表明,通过直接或间接地利用非电加热形式(太阳能和工业余热)的外场能量,有望解决能效低的问题,为镁(含镁)系储氢材料的实际应用带来新曙光。回顾了镁(含镁)系储氢材料的研发历程,阐述了各阶段取得的标志性进展,分析和探讨了今后的研究方向。
Magnesium-based(or magnesium-containing)materials are the promising solid hydrogen storage mediums due to the high gravimetric and volumetric hydrogen storage density.However,the high operation temperature,slow kinetics,and capacity decay severely limit their practical application.Based on the differences in chemical bonding,magnesiumbased(or magnesium-containing)storage materials are divided into alloys and coordination compounds.Over the past decades,much research has been undertaken to address the above mentioned issues through adjusting composition/structure,doping catalyst,micro-nanosizing and combing with other hydrides,resulting in significant improvements in kinetics rather than thermodynamics.Therefore,extra electric heating is still required to facilitate hydrogenation/dehydrogenation,which causes the low energy efficiency.Recent research focused on non-electrical heating energy,such as solar energy and waste heat,either directly or indirectly,providing new possibilities for the practical application of magnesium-based(or magnesium-containing)hydrogen storage materials.This paper reviews the development of magnesium-based(or magnesium-containing)hydrogen storage materials and the milestones at each stage.Furthermore,the research direction is analyzed and discussed.
作者
王齐森
胡文强
马仲亮
王飞
刘洋
夏广林
宋云
方方
余学斌
张庆安
孙大林
WANG Qisen;HU Wenqiang;MA Zhongliang;WANG Fei;LIU Yang;XIA Guanglin;SONG Yun;FANG Fang;YU Xuebin;ZHANG Qingan;SUN Dalin(Department of Materials Science,Fudan University,Shanghai 200433,China;School of Materials Science and Engineering,Anhui University of Technology,Maanshan 243002,China)
出处
《中国材料进展》
CAS
CSCD
北大核心
2024年第12期1064-1076,共13页
Materials China
基金
国家重点研发计划项目(2022YFB4004301)
国家自然科学基金项目(52071083)。
关键词
储氢合金
配位氢化物
外场
成分优化
结构调整
hydrogen storage alloys
coordination hydrides
external field
composition optimization
structural adjustment