摘要
基于一个广义导数非线性Schr dinger(gDNLS)方程关于初值问题在直线上的Riemann-Hilbert问题,证明了时间演化下Jump矩阵产生的误差;得到时间趋于无穷时Jump矩阵和长时间渐近解的误差阶由O(t^(-1/2))变为O(t^(-1/2) ln t)。
Based on a generalized derivative nonlinear Schr dinger(gDNLS)equation,this paper proves the error of the Jump matrix under time evolution about the Riemann-Hilbert problem on a straight line of the initial value problem.When the time tends to infinity,the error order of the Jump matrix and the long-term asymptotic solution changes from O(t^(-1/2))to O(t^(-1/2) ln t).
作者
隋凯鹏
王晓丽
SUI Kaipeng;WANG Xiaoli(School of Mathematics and Statistics,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)
出处
《齐鲁工业大学学报》
CAS
2024年第6期65-73,共9页
Journal of Qilu University of Technology
基金
国家自然科学基金(11801292)
山东省自然科学基金(ZR2019PA020、ZR2020MA049)。