摘要
为了揭示工艺过程与结构性能及失效机理的关系,基于试验方法开展了典型工艺参数对熔融沉积成型(FDM)复合材料结构力学性能及失效机理的影响研究,提出了打印工艺的优化参数。同时,基于层级多尺度理论,建立了包含孔隙、树脂富集区等典型缺陷的打印丝束高保真有限元模型,提出了复合材料构件宏观拉伸性能的预测方法,并与试验结果进行了对比分析。结果表明,树脂填充率对构件性能影响显著,树脂填充率从50%增至100%时,试件拉伸强度提高47.6%;层厚从0.2 mm增至0.4 mm时,试件拉伸强度降低51%,拉伸模量降低21%;而打印温度和打印速度对试件拉伸性能的影响相对较小。基于建立的多尺度有限元模型计算得到的拉伸模量相对误差仅为2.73%,能够实现复合材料增材制造结构力学性能的准确预测。
In order to reveal the relationship between the process and structural properties&failure mechanism,the influence of typical process parameters on the mechanical properties and failure mechanism of fused deposition modeling(FDM)composites was studied based on the experimental method,and the optimized printing process parameters were proposed.Meanwhile,based on the hierarchical multi-scale theory,a high-fidelity finite element model containing typical defects such as voids and resin-rich regions was established,and a method for predicting the macroscopic tensile properties of composite component was presented,the results of which were thereafter compared with its experimental counterparts.The results show that the flling rate of printing resin has a significant effect on the properties of the component.When the filling rate increases from 50% to 100%,the tensile strength of the specimen increases by 47.6%;when the layer thickness increases from 0.2 mm to 0.4 mm,the tensile strength decreases by 51% and tensile modulus decreases by 21%,while the influence of printing temperature and printing speed on tensile strength is relatively slight.The relative error of tensile modulus calculated based on the multi-scale finite element model is 2.73%,demonstrating its ability to accurately predict the mechanical properties of the composite structure by additive manufacturing.
作者
赵天
吴晗泰
陈薪宇
徐帅衡
苏伯昂
ZHAO Tian;WU Hantai;CHEN Xinyu;XU Shuaiheng;SU Boang(Beijing Institute of Technology,Beijing 100081,China)
出处
《航空制造技术》
CSCD
北大核心
2024年第19期55-62,91,共9页
Aeronautical Manufacturing Technology
基金
国家自然科学基金(12272044)
航空科学基金(2020Z055072002)
北京理工大学青年教师学术启动计划。
关键词
3D打印
打印参数
拉伸力学性能
数值模拟
微观力学模型
代表性体积单元
3D printing
Printing parameters
Tensile mechanical properties
Numerical simulation
Micromechanical model
Representative volume element