摘要
Quantitative assessment of organic carbon(OC)stocks in different habitats is crucial in ecology.Understanding the drivers affecting OC stocks across distinct carbon pools is essential for comprehending current patterns and predicting future changes.Alpine ecosystems,important for atmospheric CO_(2)regulation and highly vulnerable to climate change,are priority study areas.This research aims to estimate OC stocks in different pools(soil,organic horizons,and aboveground vegetation)and identify factors influencing these stocks in an alpine environment.We sampled 146 sites representing six forest types and two grassland types in the Gran Paradiso National Park(northern Italian Alps).Field samples of soils,organic horizons,and data on aboveground trees were collected to assess OC stocks,along with environmental variables.Our findings reveal nuanced variations in OC stocks across different ecosystem components.In grasslands,average soil OC was 5.57 kg m^(-2),while in forests it was 4.11 kg m^(-2).Organic horizons contained an average of 0.70 kg m^(-2),and aboveground vegetation in forests stored 6.61 kg m^(-2).Linear Mixed Models indicate that soil OC is influenced by habitat type,soil type,and elevation.OC in organic horizons is affected by aspect and forest habitat type,with composting further influenced by elevation.These results contribute to OC stock inventories for alpine ecosystems and enhance our understanding of how environmental factors influence carbon storage.Importantly,they underscore the need to consider soil type and other factors beyond land use when modeling OC stocks.This insight has implications for designing effective territorial strategies to address climate change,emphasizing the importance of a multifaceted approach to carbon stock assessment and management in alpine regions.