期刊文献+

空间数据智能中的轨迹大数据分析:多源融合与前沿进展

Trajectory Big Data Analysis in Spatial Data Intelligence:Multi-source Integration andCutting-edge Developments
下载PDF
导出
摘要 随着移动设备和传感器技术的快速发展,轨迹大数据已成为空间数据智能研究的关键数据源之一。该领域的研究涵盖多源轨迹数据的获取、融合、分析以及模式挖掘与知识发现的完整流程,在智慧城市、交通管理和位置服务等方面展现出巨大潜力。然而,轨迹数据的复杂性和多样性带来了处理、分析和利用方面的诸多挑战。对轨迹数据的获取与预处理、数据存储、模式识别、预测分析等核心方法进行了系统讨论,总结了其在各类应用场景中的最新进展。探讨了当前研究中存在的主要挑战,对未来的研究方向进行展望,为相关领域提供有价值的参考。 With the rapid development of mobile devices and sensor technology,trajectory big data has become one of the key data sources in spatial data intelligence research.Research in this field covers the complete process of acquisition,integration,analysis,as well as pattern mining and knowledge discovery of multi-source trajectory data,showing great potential in areas such as smart cities,traffic management,and location-based services.However,the complexity and diversity of trajectory data present numerous challenges in terms of processing,analysis,and utilization.To address these issues,the core methods for trajectory data acquisition and preprocessing,data storage,pattern recognition,and predictive analysis are systematically discussed,and the latest advancements in various application scenarios are summarized.In addition,the main challenges in current research are discussed,and future research directions are outlined,providing a valuable reference for related fields.
作者 李任杰 韩楠 李庆 相东升 杨博渊 张杉彬 王家伟 吴绍伟 黄晨 LI Renjie;HAN Nan;LI Qing;XIANG Dongsheng;YANG Boyuan;ZHANG Shanbin;WANG Jiawei;WU Shaowei;HUANG Chen(School of Software Engineering,Chengdu University of Information Technology,Chengdu 610225,China;School of Management,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《无线电工程》 2024年第12期2735-2743,共9页 Radio Engineering
基金 国家自然科学基金(62272066) 四川省科技计划(2023YFG0027,2024YFFK0413) 教育部人文社会科学研究规划基金(22YJAZH088) 成都市技术创新研发项目重点项目(2024-YF08-00029-GX) 成都市技术创新研发项目(2024-YF05-01217-SN) 成都市区域科技创新合作项目(2023-YF11-00020-HZ) CCF-蚂蚁科研基金项目(CCF-AFSG RF20240106)。
关键词 空间数据智能 轨迹大数据 数据分析 spatial data intelligence trajectory big data data analysis
  • 相关文献

参考文献13

二级参考文献76

  • 1郭西园,卫钟可,杜建国,赵黎明.基于3D打印的减速箱体拓扑优化及应用[J].航天制造技术,2022(5):59-61. 被引量:2
  • 2吴志刚,王闯,杨帅.2021年智慧城市发展水平调查评估报告[J].数字经济,2021(7):42-51. 被引量:3
  • 3Jihoon M, Wonjun L. Adaptive binary splitting: an RFID tag collision arbitration protocol for tag identification. In:Proceedings of the 2nd International Conference on Broadband Networks. Boston, USA: IEEE, 2005. 347-355. 被引量:1
  • 4Law C, Lee K, Kai-Yeung S. Efficient memoryless protocol for tag identification. In: Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications. Boston, USA: ACM. 2000. 75-84. 被引量:1
  • 5Ryu J, Lee H, Seok Y, Kwon T, Choi Y. A hybrid query tree protocol for tag collision arbitration in RFID systems. In: Proceedings of IEEE International Conference on Communications. Clasgow, Scotland: IEEE, 2007. 5981-5986. 被引量:1
  • 6Finkenzeller K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. New York: John Wiley and Sons, 2003. 被引量:1
  • 7Tae-Wook H, Byong-Gyo L, Kim Y S, Suh D Y, Kim J S. Improved anti-collision scheme for high speed identification in RFID system. In: Proceedings of the 1st International Conference on Innovative Computing, Information and Control. Beijing, China: IEEE, 2006. 449-452. 被引量:1
  • 8Jae-Ryong C, Jae-Hyun K. Novel anti-collision algorithms for fast object identification in RFID system. In: Proceedings of the 11th International Conference on Parallel and Distributed System. Fukuoka, Japan: IEEE, 2005. 63-67. 被引量:1
  • 9Jihoon M, Wonjun L, Srivastava J. Adaptive binary splitting for efficient RFID tag anti-collision. IEEE Communications Letters, 2006, 10(3): 144-146. 被引量:1
  • 10Lai Y C, Lin C C. A pair-resolution blocking algorithm on adaptive binary splitting for RFID tag identification. IEEE Communications Letters, 2008, 12(6): 432-434. 被引量:1

共引文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部