期刊文献+

多特征约束的输电通道杆塔点云提取

Automatic extraction of high-voltage transmission pylons with multifeature constraints
原文传递
导出
摘要 杆塔自动识别是机载LiDAR(Light Detection And Ranging)电力巡检应用的重要内容,特别是长距离、规模化应用时,高效高精度的杆塔点云提取尤为重要。针对复杂地形环境下输电通道杆塔点云快速精准识别难的问题,本文提出了一种基于多特征约束的杆塔点云自动提取方法。首先,基于输电通道地物空间分布特点,设计了离地高度、垂直最大间隙等特征;其次,对输电通道机载LiDAR点云进行去噪、滤波等一系列预处理;然后,对非地面点云进行网格化,基于离地高差、线性度等多特征约束快速定位杆塔区域,并利用分层密度法和杆塔塔体结构对称性提取杆塔中心坐标;最后,对杆塔区域点云垂直分层切片,逐层剔除非杆塔点云。采用3组不同场景的机载点云数据进行算法验证,结果表明本文所提方法可从原始点云中快速自动提取杆塔点,其中查准率、召回率、F1值分别可达91.6%、96.0%、93.5%,杆塔定位精度保持在分米级甚至厘米级。 Pylons are an important component of the transmission line,and its identification based on airborne Light Detection and Ranging(LiDAR)is crucial to power inspection.The efficient and high-precision extraction of pylon point clouds is important,especially in long-distance and large-scale applications,and is also conducive to massive data organization,parallel processing,and quantitative applications.The existing pylon extraction methods usually require a balanced and tremendous amount of training samples or lack sufficient terrain adaptability.Furthermore,these methods are vulnerable to tall objects,such as trees and buildings in the complex terrain environment of the mountainous areas.This study proposes an automatic pylon extraction method based on multifeature constraints.First,the height above the ground and the maximum vertical gap are designed on the basis of the spatial distribution of objects in the transmission corridor point clouds.Second,a series of preprocessing tasks,such as denoising and filtering,is performed on airborne LiDAR point clouds.Third,the pylon regions are quickly located on the basis of multifeature constraints,such as height difference and linearity,and the pylon center coordinates are calculated by using the layered density method and pylon structural symmetry.Finally,the point clouds of pylon regions are vertically sliced along the Z axis,and the nonpylon point clouds are eliminated layer by layer using the gap between the interference and the pylon vertical slicing.Airborne LiDAR point clouds in three different scenarios are utilized to evaluate the performance of the proposed method.The root mean square error of the pylon center coordinates are 0.04,0.40,and 0.13 m.The precision,recall,and F1-value of the pylon extraction can reach up to 91.6%,96.0%,and 93.5%.Compared with other pylon extraction methods,the qualitative analysis results show that the proposed method performs better in pylon area recognition,positioning error,and pylon point cloud extraction.Meanwhile,the proposed met
作者 王濮 王成 习晓环 聂胜 杜蒙 WANG Pu;WANG Cheng;XI Xiaohuan;NIE Sheng;DU Meng(Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;International Research Center of Big Data for Sustainable Development Goals,Beijing 100094,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《遥感学报》 EI CSCD 北大核心 2024年第10期2651-2660,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点研发计划(编号:2021YFF0704600)。
关键词 机载LiDAR点云 多特征约束 输电通道 垂直分层切片 杆塔自动提取 airborne LiDAR multifeature constraint transmission corridor vertical slicing automatic extract
  • 相关文献

参考文献6

二级参考文献51

  • 1隋立春,张宝印.Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129. 被引量:54
  • 2Jwa Y and Sohn G. 2010. A multi-level span analysis for improving 3D power-line reconstruction performance using airborne laser scanning data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38:97-102. 被引量:1
  • 3Jwa Y, Sohn G and Kim H B. 2009. Automatic 3D powedine reconstruc- tion using airborne lidar data. International Archives Photogramm Remote Sensing Spat Information Science, 38(Part 3/W8): 105-110. 被引量:1
  • 4Kim H and Sohn G. 2010.3D classification of Power-line scene from airborne laser scanning data using random forests. Photogrammetric Computer Vision and Image Analysis, 38:126-132. 被引量:1
  • 5Jing L, Zhang J X, Deng K Z, Liu Z J and Shi Q S. 2011. A new power- line extraction method based on airborne LiDAR point cloud data.2011 International Symposium on Image and Data Fusion (ISIDF) Tengchong, Yunnan: IEEE: 1-4 [DOI: 10. ll09/ISIDF. 2011 6O24293. 被引量:1
  • 6McLaughlin R A. 2006. Extracting a:ansmission lines from airborne LiDAR data. Geoseience and Remote Sensing Letters, IEEE, 3 (2): 222-226 [ DOI: 10.1109/LGRS2005.863390 ]. 被引量:1
  • 7Melzer T and Briese C. 2004. Extraction and modeling of power lines from als point clouds. Proceedings of 28th Workshop. Hagenberg, Austria. 被引量:1
  • 8Ritter M and Benger W. 2012. Reconstructing power cables from LiDAR data using eigenvector streamlines of the point distribution tensor field. Geoscienee and Remote Sensing Letters, 11(2): 549-553. 被引量:1
  • 9Ritter M, Benger W, Cosenza B, Pullman K, Moritsch H and Leimer W. 2012. Visual data mining using the point distribution tensor. The Seventh Intemational Conference on Systems. 2012:199-202. 被引量:1
  • 10Sohn G, Jwa Y and Kim H B. 2012. Automatic powerline scene classifi- cation and reconstruction using airborne LiDAR data//ISPRS An- nals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXII ISPRS Congress. Melbourne, Australia, 3:167-172. 被引量:1

共引文献414

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部