摘要
稀疏孔径光学成像系统可有效解决单孔径光学系统因增大口径而导致质量和体积增加的问题,在天文观测和遥感等领域具有重要的应用价值。以Golay3稀疏孔径光学成像系统为例,对该光学系统进行偏振光线追迹计算,分别得到系统的偏振像差分布、琼斯光瞳和振幅响应矩阵,并进一步分析填充因子对含有偏振像差的系统调制传递矩阵的影响。计算结果表明:在0°视场下,光学系统二向衰减最大值为2.313×10^(-3),相位延迟最大值为2.315×10^(-2) rad;琼斯光瞳和振幅响应矩阵的偏振串扰均沿水平方向对称分布,且振幅响应矩阵的偏振串扰具有四个峰值;Golay3稀疏孔径光学系统填充因子的变化会改变成像光束的偏振串扰程度,影响系统调制传递矩阵非对角元素中调制传递函数的分布,最终改变系统的成像质量。
Objective A sparse aperture refers to a configuration where multiple sub-mirrors are arranged in a non-redundant pattern,utilizing interference techniques.This results in a system with a smaller light-receiving area than a single large aperture,while still capturing comparable information.The polarization-induced aberrations in each optical element of a sparse aperture optical system significantly influence the overall imaging performance.However,limited research has been conducted on the polarization characteristics of such systems.We systematically examine the polarization aberrations of sparse aperture imaging systems using the polarization ray tracing theory.Methods In this study,we use the Golay3 sparse aperture imaging system,designed with ZEMAX optical software,as a case study.Based on polarization ray tracing theory,we calculate the polarization aberrations of the system,including diattenuation and phase retardation.The system’s Jones pupil is derived,and through Fourier transformation,we calculate the system’s amplitude response matrix(ARM)and modulation transfer matrix(MTM).Results and Discussions Our theoretical model reveals that,at a zero field of view(FOV),the diattenuation and phase retardation of the sparse aperture optical system exhibit rotational symmetry.The maximum values of the system’s diattenuation and phase retardation are 2.313×10^(-3) and 2.315×10^(-2) rad,respectively,as shown in Fig.6 and Fig.7 indicate that across the full FOV,the Peak-to-Valley(PV)values of diattenuation and phase retardation share a consistent distribution characteristic,exhibiting symmetrical distribution along the Y-field.By performing a Fourier transformation on the Jones pupil,we obtain the system’s ARM,as shown in Fig.10.The diagonal matrices MARM,XX and MARM,YY of ARM are close to the amplitude response function of a diffraction-limited system.Figs.10(b)and(c)illustrate that the nondiagonal matrices MARM,XY and MARM,YX have equal magnitudes,exhibiting a symmetrical structure not centered at the orig
作者
李智翔
吴泉英
范君柳
陈宝华
刘熙煜
Li Zhixiang;Wu Quanying;Fan Junliu;Chen Baohua;Liu Xiyu(Key Laboratory of Efficient Low-Carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions,School of Physical Science and Technology,Suzhou University of Science and Technology,Suzhou 215009,Jiangsu,China;Jiangsu Graduate Workstation,Suzhou FOIF Co.,Ltd.,Suzhou 215006,Jiangsu,China;Jiangsu Graduate Workstation,Zhangjiagang Optical Instrument Co.,Ltd.,Suzhou 215616,Jiangsu,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2024年第19期183-192,共10页
Acta Optica Sinica
基金
国家自然科学基金(62275187,61875145,11804243)
苏州市产业前瞻与关键核心技术项目(SYC2022145)
江苏省“十四五”重点学科项目(2021135)
苏州市光学精密测试技术重点实验室建设项目(SZS201202)
江苏省研究生科研创新计划项目(KYCX24_3429)。
关键词
稀疏孔径
偏振像差
琼斯光瞳
振幅响应矩阵
调制传递矩阵
sparse aperture
polarization aberration
Jones pupil
amplitude response matrix
modulation transfer matrix