摘要
在CO_(2)相变致裂岩石技术中,为探究岩石损伤范围与CO_(2)相变致裂参数的关系,根据Mises准则和损伤力学理论建立了CO_(2)相变冲击岩石的致裂损伤半径计算公式。利用3DEC软件模拟了不同泄能片厚度下岩石的致裂损伤半径,并与理论计算相比较,验证了所建模型的准确性。分析了泄能片厚度、岩石强度、致裂孔孔径、CO_(2)充装质量等因素对岩石损伤的影响规律。结果表明:岩石的致裂损伤半径与泄能片厚度、CO_(2)充装质量呈对数增长关系,与岩石强度、致裂孔孔径呈指数衰减关系;增加泄能片厚度是增大岩石致裂损伤半径的最有效手段;致裂孔孔径的增大会使岩石的损伤范围迅速减小。可为CO_(2)相变致裂岩石的损伤机制、技术参数选取等提供参考。
In the technology of rock fractures caused by CO_(2)phase transition,in order to study the relationship between the damage range of rocks and the CO_(2)phase transition fracturing parameters,a calculation formula for the damage radius of rock fractures caused by CO_(2)phase transition impact was established based on Mises criterion and damage mechanics theory.The damage radius of rocks with different thicknesses of energy release sheet was simulated using 3DEC software,and compared with theoretical calculations to verify the accuracy of the established model.The influence of factors such as thickness of the energy release sheet,rock strength,diameter of borehole,and CO_(2)filling mass on rock damage was analyzed.The results show that the damage radius has a logarithmic growth relationship with the thickness of the energy release sheet and CO_(2)filling mass,and an exponential decay relationship with the rock strength and the diameter of borehole.Increasing the thickness of the energy release sheet is the most effective way to increase the damage radius.The increase in the diameter of the borehole will rapidly reduce the damage range of rock.It can provide references for the damage mechanism and technical parameter selection in CO_(2)phase trasition blasting.
作者
阿比尔的
胡尊镕
傅林
韩亚峰
刘明维
ABI Erdi;HU Zunrong;FU Lin;HAN Yafeng;LIU Mingwei(Nationl Engineering Research Center for Inland Waterway Regulation,Chongqing Jiaotong University,Chongqing,400074;Key Laboratory of Geological Hazards Mitigation for Mountainous Highway and Waterway,Chongqing Municipal Education Commission,Chongqing Jiaotong University,Chongqing,400074)
出处
《爆破器材》
CAS
CSCD
北大核心
2024年第6期41-49,共9页
Explosive Materials
基金
国家自然科学基金青年基金(41907261)
重庆交通大学研究生科研创新项目(2022S0023)
重庆市水利科技项目(CQSLK-2022015)。