期刊文献+

基于双向长短期记忆网络的纺纱工艺重用知识图谱构建

Construction of a knowledge graph for reusable spinning processes based onbidirectional long short-term memory networks
下载PDF
导出
摘要 针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。 Textile spinning process knowledge is a vital technical heritage in the textile industry,and its systematic organization and efficient reuse are crucial for driving industrial technological innovation and preserving cultural diversity.However,spinning process knowledge is often scattered across various documents,practical experiences,and master-apprentice transmissions,exhibiting a high degree of fragmentation and unstructuredness,and posing significant challenges to knowledge integration,retrieval,and application.With the rapid development of the textile industry,the updating and iteration of spinning process knowledge have accelerated,rendering traditional manual recording and inheritance methods inadequate for meeting the demands of modern industries for efficient and precise knowledge management.Particularly when dealing with complex and varied spinning processes,traditional methods often fail to fully capture process details,leading to information loss or distortion during transmission,thereby affecting the integrity and accuracy of spinning process knowledge.To address this challenge,research on the reuse of spinning process knowledge based on knowledge graphs has emerged.As a structured knowledge representation method,knowledge graphs can formally describe entities,attributes,and relationships within spinning process knowledge,forming an interconnected knowledge network.By constructing a spinning process knowledge graph,systematic organization,standardized expression,and intelligent management of spinning process knowledge can be achieved,so as to provide textile practitioners with a comprehensive,accurate,and easily understandable knowledge resource platform.To address issues such as low production efficiency,resource waste,and decision-making errors caused by fragmented spinning process information,a method for constructing a spinning process reuse knowledge graph based on a bidirectional long short-term memory network(BiLSTM)was proposed.Firstly,spinning process-related concepts,terminologies,and relati
作者 胡胜 张溪 刘登基 高冰冰 赵小惠 HU Sheng;ZHANG Xi;LIU Dengji;GAO Bingbing;ZHAO Xiaohui(School of Mechanical and Electrical Engineering,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《丝绸》 CAS CSCD 北大核心 2024年第12期52-60,共9页 Journal of Silk
基金 国家自然科学基金项目(72001166) 教育部人文社会科学青年基金项目(24YJC630073) 陕西省自然科学基础研究计划项目(2022JQ-721)。
关键词 知识图谱 纺纱工艺知识 双向长短期记忆网络 知识抽取 知识融合 实体关系 knowledge graph spinning process knowledge bidirectional long short-term memory networks knowledge extraction knowledge fusion entity relationship
  • 相关文献

参考文献8

二级参考文献64

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部