期刊文献+

绳牵引门式起重机器人动力学建模与分析

Dynamic Modeling and Analysis of Wire-driven Gantry-type Crane Robot
下载PDF
导出
摘要 由于传统的造船门式起重机难以控制吊具姿态,因此涉及空中翻身等复杂动作的精准组装作业成为难点。为提高船舶建造效率、减少建造周期,将绳牵引并联机器人应用至门式起重机吊装领域,并开发一种新型绳牵引起重机器人。首先,通过矢量封闭理论对绳牵引起重机器人的运动学位置逆解进行分析,拟定吊具的运动轨迹,分析绳长的变化情况。其次,基于牛顿-欧拉法建立了绳牵引起重机器人的动力学模型,并采用绳索张力分布算法对绳索张力进行了优化。再次,通过MATLAB和ADAMS进行联合仿真。仿真结果表明:优化后的绳索张力光滑连续变化;在系统为开环的情况下,环形轨迹下绳长变化最大误差均值为46 mm;螺旋线轨迹下绳长变化最大误差均值为27 mm;往复运动轨迹误差比例均值为0.55%。最后,搭建了实验样机,实验条件下绳索张力误差比例在22%以内,验证了建立的动力学模型的准确性,为控制策略设计及样机开发提供了理论基础。 Due to the difficulty in controlling the lifting tool's posture in traditional shipbuilding gantry cranes,precise assembly operations involving complex maneuvers such as aerial flipping have become challenging.To enhance shipbuilding efficiency and reduce the construction cycle,the concept of wire-driven parallel robots was introduced into the gantry crane lifting field,leading to the development of a novel wire-driven lifting robot.Initially,the kinematic position inverse solution of the wire-driven lifting robot was analyzed using vector closure theory,which facilitated the planning of the lifting tool's trajectory and the analysis of wire length variations.Subsequently,a dynamics model for the robot was established based on the Newton-Euler method,and a wire tension distribution algorithm was employed to optimize the tensions within the wires.Joint simulations were then conducted using MATLAB and ADAMS.The simulation results demonstrate that the optimized wire tensions exhibit smooth and continuous variations.Under open-loop conditions,the maximum mean error in wire length variation is 46 mm for circular trajectories,27 mm for spiral trajectories,and the mean error ratio for reciprocating trajectories is 0.55%.Finally,an experimental prototype was constructed,and the wire tension error ratio under experimental conditions remained within 15%,validating the accuracy of the established dynamics model.This validation provides a theoretical basis for the design of control strategies and the development of future prototypes.
作者 赵世龙 王生海 李建 韩广冬 罗伟荣 陈海泉 ZHAO Shi-long;WANG Sheng-hai;LI Jian;HAN Guang-dong;LUO Wei-rong;CHEN Hai-quan(College of Marine Engineering,Dalian Maritime University,Dalian 116026,China)
出处 《科学技术与工程》 北大核心 2024年第32期13805-13812,共8页 Science Technology and Engineering
基金 国家自然科学基金(52101396) 中央高校基本科研业务费专项(3132022207)。
关键词 绳牵引起重机器人 并联机构 动力学建模 张力优化 联合仿真 wire-driven crane robot parallel mechanism dynamic modeling tension optimization co-simulation
  • 相关文献

参考文献10

二级参考文献39

  • 1石怀涛,李刚.欠驱动门式起重机控制系统仿真实验[J].实验技术与管理,2020,37(2):124-127. 被引量:1
  • 2何守义.600t龙门吊小车轨道焊接工艺[J].中国修船,2005,18(1):32-33. 被引量:1
  • 3陈坚.船厂大型龙门吊吊梁设计[J].江苏船舶,2006,23(3):10-10. 被引量:1
  • 4DAGALAKIS N G, ALBUS J S, WANG B L, et al. Stiffness study of a parallel link robot crane for shipbuilding applications[J]. ASME Journal on Offshore Mechanics and Arctic Engineering, 1989,111 (3) : 183-193. 被引量:1
  • 5BOSTELMAN R, ALBUS J, DAGALAKIS N, et al. Applications of the NIST robo crane[C]//Proceedings of the 5th International Symposium on Robotics and Manufacturing. Hawaii: [s. n. ], 1994. 被引量:1
  • 6ALBUS J S, BOSTELMAN R V, DAGAI.AKIS N. The NIST Robo-Crane[J]. Journal of Robotics System, 1992, 10(5):709-724. 被引量:1
  • 7BOSTELMAN R, ALBUS J, DAGALAKIS N , et al. Robo-Crane project: An advanced concept for large scale manufaeturing[C] // Proceedings of the AUVSI Conference. Orlando :[s. n. ], 1996. 被引量:1
  • 8ARAI T, OSUMI H. Three wire suspension robot[J]. Industrial Robot, 1992(19) : 17-22. 被引量:1
  • 9MAIER T, WOERNLE C. Kinematic control of cable suspension robots[C] // Proceedings of the NATO-ASI Computational Methods in Mechanisms. Varna:[s. n. ],1997. 被引量:1
  • 10MAIER T, WOERNLE C. Inverse kinematics for an underconstrainecl cable suspension manipulator[M]//Advances in Robot Kinematics: Analysis and Control. Dordrecht: Kluwer Academic Publishers, 1998: 97-104. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部