摘要
针对现阶段电力工程造价数据预测准确度较低的问题,提出了一种基于随机森林优化RL的相关预测算法。通过分析影响电力工程造价的因素,将其按照影响程度的大小进行分级,利用随机森林算法加以筛选,并采用筛选后的影响因素特征向量作为预测模型的训练和测试数据。同时,将电力工程造价预测问题转化为输电线路规划问题,再使用强化学习优化蚁群算法的参数来构建电力工程造价预测模型。经过实验对照,综合两种栅格尺寸结果,所提方案比两种对照组算法的电子工程造价分别降低了2.97%、3.78%。
Aiming at the problem of lower accuracy of power project cost data prediction at the present stage,a power project cost prediction algorithm based on random forest optimization RL was proposed.By analyzing the factors that affect the cost of power projects,the random forest algorithm was used to screen the factors according to the degree of impact on the cost of power projects.The filtered factor eigenvector was used as the training and testing data of the power project cost prediction model.The problem of power project cost prediction was transformed to the problem of transmission line planning,and the parameters of ant colony algorithm were optimized by reinforcement learning to build the power project cost prediction model.Through the contrast experiment,in combination with the results for two grid sizes,the power project cost described in this paper is reduced by 2.97%and 3.78%,respectively,compared with the two contrast group algorithms.
作者
张文静
刘云
周波
洪崇
王立功
ZHANG Wenjing;LIU Yun;ZHOU Bo;HONG Chong;WANG Ligong(School of Electrical and Electronic Engineering,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,Hebei,China;School of Energy,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,Hebei,China;Department of Internet,State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050001,Hebei,China;Economic and Technological Research Institute,State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050001,Hebei,China;School of Electrical and Automation,Wuhan University,Wuhan 430072,Hubei,China;Department of Software Cost,Hebei SECPT Computer Consulting Service Co.,Ltd.,Shijiazhuang 050081,Hebei,China)
出处
《沈阳工业大学学报》
CAS
北大核心
2024年第6期754-759,共6页
Journal of Shenyang University of Technology
基金
河北省自然科学基金项目(F2021210005)
国网河北省电力有限公司科技项目(5204JY22000L)。
关键词
输变电工程
工程造价
随机森林
强化学习
蚁群算法
输电线路规划
数据预测
特征向量
power transmission and transformation project
project cost
random forest
reinforcement learning
ant colony algorithm
transmission line planning
data prediction
eigenvector