摘要
Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism.Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration.Therefore,designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge.Here,this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis,which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway.The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model.Furthermore,in an aged postmenopausal rat femoral condyle defect model,3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism,enabling personalized bone defect repair.These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.
基金
supported by the National Natural Science Foundation of China(Grant Nos.32222042,82225031,82172464,82172453,81972086,52171237,and 52175274)
the National Key Research and Development Program of China(Grant No.2023YFC2509600)
the Program of Shanghai Excellent Academic Leader(Grant No.22XD1401900)
the Shuguang Plan Project and the Shanghai Rising-Star Program(Grant No.21QA1405500)
the Non-profit Central Research Institute Fund of National Research for Family Planning(Grant No.2022GJM03).