摘要
Due to their unique photoelectric properties,nontoxic tin-based perovskites are emerging candidates for efficient near-infrared LEDs.However,the facile oxidation of Sn2+and the rapid crystallization rate of tin-based perovskites result in suboptimal film quality,leading to inferior efficiencies of tin-based perovskite light-emitting diodes(Pero-LEDs).In this study,we investigate the influence of commonly used solvents on the quality of the CsSnI3 films.Remarkably,DMSO exhibits a stronger interaction with SnI2,forming a stable intermediate phase of SnI2·3DMSO.This intermediate effectively inhibits the oxidation of Sn2+and slows down the crystallization rate,bringing in lower defect state density and higher photoluminescence quantum yield of the pre-pared perovskite films.Consequently,the corresponding Pero-LEDs achieve a maximum external quantum efficiency(EQE)of 5.6%,among the most effi-cient near-infrared Pero-LEDs.In addition,the device processes ultra-low effi-ciency roll-off and high reproducibility.Our research underscores the crucial role of solvent-perovskite coordination in determining film quality.These find-ings offer valuable guidance for screening solvents to prepare highly efficient and stable tin-based perovskites.
出处
《InfoMat》
SCIE
CSCD
2024年第5期58-68,共11页
信息材料(英文)
基金
supported by the National Key Research and Development Program of China(2022YFA1204800)
National Natural Science Foundation of China(U21A2078,22179042,and 12104170)
the Natural Science Foundation of Fujian Province(2023J06034)
Scientific Research Funds and Subsidized Project for Postgraduate's Innovative Fund in Scientific Research of Huaqiao University。