期刊文献+

多圆盘上矩阵值函数的自适应分解

Adaptive Decomposition for Matrix-valued Functions on Polydiscs
原文传递
导出
摘要 我们用两种方法研究了单位多圆盘上Hardy空间中矩阵值函数的自适应分解:一种方法使用乘积TM系统,另一种方法使用乘积Szegö字典的Gram-Schmidt正交化.在分解的每一步中,参数和正交投影都是根据给定的矩阵值函数自适应选出来的,且分解的类型属于Fourier型.在某些条件下我们证明了分解的收敛性和收敛率. In this paper we study the adaptive decomposition for matrix-valued functions in the Hardy space of the unit polydisc by two ways.One uses product-TM systems,and the other uses the Gram-Schmidt orthogonalization of product-Szegödictionaries.In each step of the decomposition the parameters and the orthogonal projections are adaptively chosen to best match the given matrix-valued functions,and the decomposition we get is of Fourier type.The convergence and the convergence rate are proved under some conditions.
作者 王晋勋 Jin Xun WANG(School of Mathematics and Statistics,Guangdong University of Foreign Studies,Guangzhou 510006,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2024年第6期1179-1197,共19页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11701105) 澳门科学技术发展基金(0123/2018/A3)资助项目。
关键词 Szegö核 Takenaka-Malmquist系统 自适应Fourier分解 单位多圆盘 Szegökernel Takenaka-Malmquist system adaptive Fourier decomposition unit polydisc
  • 相关文献

参考文献3

二级参考文献33

  • 1WANG SiLei Department of Mathematics, Zhejiang University, Hangzhou 310027, China.Simple proofs of the Bedrosian equality for the Hilbert transform[J].Science China Mathematics,2009,52(3):507-510. 被引量:2
  • 2Tan LiHui,Yang LiHua,Huang DaRen.The structure of instantaneous frequencies of periodic analytic signals[J].Science China Mathematics,2010,53(2):348-356. 被引量:10
  • 3Baratchart L, Leblond J. Hardy approximation to Lp functions on subsets of the circle with 1 ≤ p < ∞. ConstrApprox, 1998, 14: 41-56. 被引量:1
  • 4Baratchart L, Stahl H, Wielonsky F. Asymptotic uniqueness of best rational approximants of given degree to Markovfunctions in L2 of the circle. Constr Approx, 2001, 17: 103-138. 被引量:1
  • 5Baratchart L, Wielonsky F. Rational approximation in the real Hardy space H2 and Stieltjes integrals: A uniquenesstheorem. Constr Approx, 1993, 9: 1-21. 被引量:1
  • 6Brackx F, Delanghe R, Sommen F. Clifford Analysis. Boston: Pitman Advanced Publishing Program, 1982. 被引量:1
  • 7Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations. Constr Approx, 1997, 13: 57-98. 被引量:1
  • 8Delanghe R, Sommen F, Sou?ek V. Clifford Algebra and Spinor-valued Functions. A Function Theory for the DiracOperator. Dordrecht: Kluwer Academic Publishers Group, 1992. 被引量:1
  • 9DeVore R A. Nonlinear approximation. Acta Numer, 1998, 7: 51-150. 被引量:1
  • 10DeVore R A, Temlyakov V N. Some remarks on greedy algorithms. Adv Comput Math, 1996, 5: 173-187. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部