摘要
我们用两种方法研究了单位多圆盘上Hardy空间中矩阵值函数的自适应分解:一种方法使用乘积TM系统,另一种方法使用乘积Szegö字典的Gram-Schmidt正交化.在分解的每一步中,参数和正交投影都是根据给定的矩阵值函数自适应选出来的,且分解的类型属于Fourier型.在某些条件下我们证明了分解的收敛性和收敛率.
In this paper we study the adaptive decomposition for matrix-valued functions in the Hardy space of the unit polydisc by two ways.One uses product-TM systems,and the other uses the Gram-Schmidt orthogonalization of product-Szegödictionaries.In each step of the decomposition the parameters and the orthogonal projections are adaptively chosen to best match the given matrix-valued functions,and the decomposition we get is of Fourier type.The convergence and the convergence rate are proved under some conditions.
作者
王晋勋
Jin Xun WANG(School of Mathematics and Statistics,Guangdong University of Foreign Studies,Guangzhou 510006,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2024年第6期1179-1197,共19页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(11701105)
澳门科学技术发展基金(0123/2018/A3)资助项目。