期刊文献+

基于深度强化学习的无人机虚拟管道视觉避障 被引量:1

Virtual Tube Visual Obstacle Avoidance for UAV Based on Deep Reinforcement Learning
下载PDF
导出
摘要 针对虚拟管道下的无人机(Unmanned aerial vehicle,UAV)自主避障问题,提出一种基于视觉传感器的自主学习架构.通过引入新颖的奖励函数,设计了一种端到端的深度强化学习(Deep reinforcement learning,DRL)控制策略.融合卷积神经网络(Convolutional neural network,CNN)和循环神经网络(Recurrent neural network,RNN)的优点构建双网络,降低了网络复杂度,对无人机深度图像进行有效处理.进一步通过AirSim模拟器搭建三维实验环境,采用连续动作空间优化无人机飞行轨迹的平滑性.仿真结果表明,与现有的方法对比,该模型在面对静态和动态障碍时,训练收敛速度快,平均奖励高,任务完成率分别增加9.4%和19.98%,有效实现无人机的精细化避障和自主安全导航. In order to solve the problem of autonomous obstacle avoidance of unmanned aerial vehicle(UAV)under virtual tube,this paper proposes an autonomous learning architecture based on visual sensors,in which a novel reward function is introduced,and an end-to-end deep reinforcement learning(DRL)control strategy is designed.By integrating convolutional neural network(CNN)and recurrent neural network(RNN),a dual-network architecture is constructed,reducing network complexity and enabling effective processing of UAV depth images.Furthermore,using the AirSim simulator,a three-dimensional experimental environment is created to optimize the smoothness of UAV flight trajectories in a continuous action space.Compared with the existing methods when confronting both static and dynamic obstacles,the simulation results indicate that this model achieves faster training convergence and higher average rewards.The task completion rates in the two scenarios are also increased by 9.4%and 19.98%,respectively,which can effectively achieve precise obstacle avoidance and autonomous safe navigation of drones.
作者 赵静 裴子楠 姜斌 陆宁云 赵斐 陈树峰 ZHAO Jing;PEI Zi-Nan;JIANG Bin;LU Ning-Yun;ZHAO Fei;CHEN Shu-Feng(College of Automation and College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023;College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016;College of Control Science and Engineering,Zhejiang University,Hanghzou 310058;Beijing Institute of Computer Technology and Application,Beijing 100854)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2245-2258,共14页 Acta Automatica Sinica
基金 直升机动力学全国重点实验室(2024-ZSJ-LB-02-05) 机械结构力学及控制国家重点实验室(MCMS-E-0123G04) 工业控制技术全国重点实验室(ICT2023B21) 南京邮电大学校级自然科学基金(NY223119)资助。
关键词 自主避障 深度强化学习 虚拟管道 无人机 Autonomous obstacle avoidance deep reinforcement learning(DRL) virtual tube unmanned aerial vehicle(UAV)
  • 相关文献

参考文献7

二级参考文献58

共引文献94

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部