期刊文献+

一种张量域空间平滑解相干参数估计算法

A Decoherence Parameter Estimation Algorithm forSpatial Smoothing in Tensor Domain
下载PDF
导出
摘要 为了提高传统空间平滑算法对相干信号的估计精度,提出了一种张量域空间平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,利用四元数的正交特性重新构造极化域导向矢量;其次,考虑阵列接收数据固有的多维结构特征,构造三阶张量表示的阵列接收数据模型;接着,借鉴二维空间平滑算法的思想,在张量接收数据模型中构建三阶张量子阵块,再使该子阵块在张量域进行前向空间平滑,继而得到平滑后的张量协方差矩阵;最后,通过高阶奇异值分解(Higher-order Singular Value Decomposition,HOSVD)得到信号子空间,利用降维MUSIC算法对相干信号源的二维波达方向(Direction of Arrival,DOA)进行估计,并根据已经获得的DOA信息求解出相干信号的极化参数。仿真结果表明,在信噪比为0 dB以及快拍数为100的情况下,该算法的估计精度比空间平滑算法提高了约70%,成功分辨概率提高了约89%,且无需进行四维谱峰搜索,降低了算法的复杂度,对相干信号具有更高的估计精度和分辨能力。 In order to improve the estimation accuracy of coherent signals by traditional spatial smoothing algorithms,a tensor-domain spatial smoothing multiple signal classification(MUSIC)decoherence algorithm is proposed.First,the orthogonality of the quaternions is used to reconstruct the steering vector of the polarization domain.Second,a third-order tensor representation of the array received data model is constructed by taking into account the inherent multidimensional structural features of the array received data.Then,using the idea of two-dimensional spatial smoothing algorithm,the third-order tensor subarray block is constructed in the tensor received data model,the subarray block is forward spatially smoothed in the tensor domain,and then the smoothed tensor covariance matrix is obtained.Finally,the signal subspace is obtained by higher-order singular value decomposition(HOSVD).The two-dimensional direction of(DOA)arrival of the coherent signal source is estimated by using the dimensionality reduction MUSIC and algorithm,the polarization parameters of the coherent signal are solved according to the obtained DOA The information.simulation results show that the estimation accuracy of the proposed algorithm is about 70%higher than that of the spatial smoothing algorithm,and the probability of successful resolution is about 89%higher than that of the spatial smoothing algorithm when the signal-to-noise ratio(SNR)is 0 dB and the number of snapshots is 100.Moreover,the algorithm does not require searching for four-dimensional spectral peaks and the complexity is reduced,the estimation accuracy and resolution of the coherent signal is higher.
作者 蓝晓宇 单靖炀 梁明珅 董明 马爽 LAN Xiaoyu;SHAN Jingyang;LIANG Mingshen;DONG Ming;MA Shuang(College of Electronic and Information Engineering,Shenyang Aerospace University,Shenyang 2.Liaoning 110136,China;Provincial Key Laboratory of Aerospace Information Perception and Intelligent Shenyang Processing,110136,China;Beijing Institute of Mechanical and Electrical Engineering,Beijing 100074,China)
出处 《电讯技术》 北大核心 2024年第11期1817-1825,共9页 Telecommunication Engineering
基金 国家青年科学基金(61801308) 航空科学基金(2020Z017054001) 辽宁省教育厅面上项目(LJKMZ20220535) 辽宁省自然科学基金(2022-BS-216) 辽宁省青年科技人才“育苗”项目(JYT2020129)。
关键词 极化-DOA估计 解相干参数估计 空间平滑 张量域 polarization-DOA estimation decoherence parameter estimation spatial smoothing tensor domain
  • 相关文献

参考文献5

二级参考文献53

  • 1赵继超,陶海红,高志奇.基于降维四元旋转不变子空间算法的波达角估计[J].电波科学学报,2015,30(3):483-490. 被引量:6
  • 2刘云,李志舜.基于时频阵列模型的波达方向估计[J].声学学报,2005,30(2):115-119. 被引量:7
  • 3张浩,张志军,朱国军.信源数目估计误差影响下的修正二维MUSIC算法分析[J].西安电子科技大学学报,2007,34(4):577-582. 被引量:2
  • 4Forster P,Larzabal P,Boyer E.Threshold performance analysis of maximum likelihood DOA estimation[J].IEEE Trans.on Signal Processing,2004,52(11):3183-3191. 被引量:1
  • 5Tadaion A A,Derakhtian M,Gazor S,et al.A fast multiples -ource detection and localization array signal processing algorithm using the spatial filtering and ML approach[J].IEEE Trans.on Signal Processing,2007,55(5):271-274. 被引量:1
  • 6Zoltowski M D,Haardt M,Mathews C P.Closed-form 2D angle estimation with rectangular arrays in element space or beamspace viaunitary ESPRIT[J].IEEE Trans.on Signal Processing,1996,44(2):316-328. 被引量:1
  • 7Jian C,Wang S,Lin L.Two-dimensional DOA estimation of coherent signals based on 2D unitary ESPRIT method[C] ∥ The 8th International Conference on Signal Processing,2006:16-20. 被引量:1
  • 8Thompson J S,Grant P M,Mulgrew B.Performance of spatial smoothing algorithms for correlated sources[J].IEEE Trans.on Signal Processing,1996,44(4):1040-1046. 被引量:1
  • 9Dong Mei,Zhang Shouhong,Wu Xiangdong,et al.A high resolution spatial smoothing algorithm[C] ∥International Symposium onMicrowave,Antenna,Propagation and EMC Technologies for Wireless Communications,2007:1031-1034. 被引量:1
  • 10Kundu D.Modified MUSIC algorithm for estimating DOA of signals[J].IEEE Trans.on Signal Processing,1996,48(1):85-90. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部