期刊文献+

基于动态不确定因果图的航天器故障诊断方法

Dynamic Uncertain Causality Graph-based Methodology for Spacecraft Fault Diagnosis
下载PDF
导出
摘要 针对航天器智能化故障诊断的问题,基于动态不确定因果图(Dynamic Uncertain Causality Graph,DUCG)构建诊断模型,克服了基于规则的方法、数据驱动方法存在的诊断正确率低、数据依赖程度高、可解释性差等问题。DUCG基于领域专家的经验知识、以图形化的方式表达航天器遥测参数与可能的故障之间的不确定性知识,不依赖于已有的故障数据,具有诊断正确率高、可解释性强等特征。使用DUCG构建包含42个故障、129个遥测参数的诊断模型,试验结果表明模型的准确率为100%。 This Paper addresses the challenge of intelligent fault diagnosis in spacecraft by introducing a diagnostic model based on the Dynamic Uncertain Causality Graph(DUCG).This model surpasses traditional rule-based method and data-driven approaches,which often suffer from low diagnostic accuracy,high data dependency and insufficientinterpretability.DUCG leverages domain experts'experiential knowledge and graphically represents the uncertain relationships between spacecraft telemetry parameters and potential faults.It operates independently of existing fault data,offering high diagnostic accuracy and enhancedinterpretability.The DUCG-basedmodel encompasses 42 faults and 129 telemetry parameters.Experimental validations of the model demonstrat a 100%accuracy rate in fault diagnosis.
作者 邱瑞 姚全营 刘鹏 张湛 刘超 涂语恒 QIU Rui;YAO Quanying;LIU Peng;ZHANG Zhan;LIU Chao;TU Yuheng(Beijing Institute of Spacecraft System Engineering,Beijing 100094,China;Beijing Yutong Intelligence Technology Co.,Ltd.,Beijing 100084,China;Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China;School of Computer Science,Beijing Institute of Technology,Beijing 100081,China)
出处 《航天器工程》 CSCD 北大核心 2024年第5期9-14,共6页 Spacecraft Engineering
关键词 航天器 故障诊断 动态不确定因果图 知识表达 概率推理 spacecraft fault diagnosis Dynamic Uncertain Causality Graph(DUCG) knowledge expression probabilistic inference
  • 相关文献

参考文献4

二级参考文献53

  • 1Lucas P J F. Bayesian network modeling through qualitative patterns. Artificial Intelligence, 2005, 163(2): 233-263. 被引量:1
  • 2Shortliffe E H, Buchanan B G. A model of inexact reason in medicine. Mathematical Bioscience, 1975, 23(3/4): 351-379. 被引量:1
  • 3Sharer G. A Mathematical Theory of Evidence. Princeton, N J: Princeton University Press, 1976. 被引量:1
  • 4Duda R O et al. Development of the Prospector consultation system for mineral exploration. Final report, SRI Project 5821 and 6415, SRI International, 1978. 被引量:1
  • 5Zadeh L A. The role of fuzzy logic in the management of un- certainty in expert systems. Fuzzy Sets and Systems, 1983, 11: 199-227. 被引量:1
  • 6Pearl J. Fusion, propagation, and structuring in belief net- works. Artificial Intelligence, 1986, 29(3): 241-288. 被引量:1
  • 7Pearl J. Probabilistic Reasoning in Intelligent Systems. San Mateo: Morgan Kaufmann, 1988. ISBN 0-934613-73-7. 被引量:1
  • 8Henrion M. Practical issues in constructing a Bayes' belief network. In Proc. the 3rd Conf. Uncertainty in Artificial Intelligence, July 1987, pp.132-139. 被引量:1
  • 9Srinivas S. A generalization of the noisy-OR model. In Proe. the 9th Conf. Uncertainty in Artificial Intelligence, San Fran- cisco, July 1993, pp.208-215. 被引量:1
  • 10Diez F J. Parameter adjustment in Bayes networks: The gen- eralized noisy-OR gate. In Proc. the 9th Conf. Uncertainty in Artificial Intelliqence, 1993, pp.99-105. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部