期刊文献+

基于PCA和多分类SVM的网络游戏流量识别

Online Game Traffic Recognition Based on PCA and Multi-classification SVM
下载PDF
导出
摘要 传统机器学习从原始网络游戏流量准确提取特征面临巨大的困难。目前,已有研究者使用深度学习从原始流量中自动化提取特征,然后再进行流量分类。论文针对深度学习模型开销较大,计算复杂度较高等问题,提出了一种基于PCA和多分类SVM的网络游戏流量识别模型。首先将游戏流量预处理为28×28的灰度图,然后利用主成分分析PCA进行特征降维,最后基于多分类SVM算法进行游戏流量的分类和识别。经过三折交叉实验,结果表明在保持较好的分类效果基础上能够实现较低的计算复杂度。 Traditional machine learning is facing great difficulties in accurately extracting features from raw online game traffic.At present,some researchers have used deep learning to automatically extract features from raw traffic and then classify traffic.This paper aims at the problems of high overhead and high computational complexity of deep learning model,an online game traffic recognition model based on PCA and multi-classification SVM is proposed.Firstly,the game traffic is preprocessed into a 28×28gray scale map.Then,principal component analysis(PCA)is used for feature dimension reduction.Finally,the game traffic is classified and recognized based on multi-classification SVM algorithm.The results of three-fold crossover experiment show that the algorithm can achieve lower computational complexity while maintaining better classification effect.
作者 宁安安 年梅 张俊 NING Anan;NIAN Mei;ZHANG Jun(School of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054;Xinjiang Institute of Physics and Chemistry Technology,Chinese Academy of Sciences,Urumqi 830011)
出处 《计算机与数字工程》 2024年第9期2739-2744,共6页 Computer & Digital Engineering
基金 自治区高校科研项目(编号:XJEDU2017S032) 国家重点研发计划子课题(编号:E1182101)资助。
关键词 机器学习 PCA 多分类SVM 流量识别 深度学习 machine learning PCA multi-classification SVM traffic identification deep learning
  • 相关文献

参考文献12

二级参考文献51

  • 1TOUCH J, LEAR E, MANKIN A, et aI. Internet assigned numbers authority (IANA)[EB/OL]. [2010-08-28]. http:// www.iana.orglassignments/port-numbers. 被引量:1
  • 2SEN S, SPATSCHECK 0, WAND D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW'04). New York, USA: ACM, 2004: 512-521. 被引量:1
  • 3KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: Multilevel traffic classification in the dark[C]/! ACM SIGCOMM. Phila-delphia, PA, USA: ACM, 2005. 被引量:1
  • 4ZUEV D, MOORE A W. Traffic classification using a statistical approach[C]//Proceedings of PAM 2005. Boston, USA: [s.n.], 2005. 被引量:1
  • 5DAINOTTI. A, PESCAPE. A, SANSONE C. Issues and future directions in traffic c1assification[J]. IEEE Network, 2012,26(1): 35-40. 被引量:1
  • 6GU Cheng-jie, ZHANG Shun-yi, SUN Yan-fei. Real-time encrypted traffic identification using machine learning[J]. Journal ofSofiware, 2011, 6(6): 1009-1016. 被引量:1
  • 7HURLEY J, GARCI-PALACIOS E, SEZER S. Classifying network protocols: a 'two-way' flow approach[J]. Communications, 2012, 5(1): 19-89. 被引量:1
  • 8TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(1): 211-244. 被引量:1
  • 9ZHANG Mian-ji, ROBUST Y. Hyperspectral classification using relevance vector machine[J]. Geoscience and Remote Sensing, 2011, 49(6): 2100-2112. 被引量:1
  • 10MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//Proc of the 2005 ACM SIGMETRICS Int'l Conf on Measurement and Modeling of Computer Systems. Banff: ACM, 2005: 50-60. 被引量:1

共引文献2342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部