期刊文献+

基于深度学习的软件漏洞挖掘方法

Software vulnerability mining method based on deep learning
下载PDF
导出
摘要 针对软件漏洞挖掘领域的问题,文章探讨了一种基于深度学习的漏洞检测方法。首先,分析了目前常用的漏洞挖掘方法;其次,研究设计了软件漏洞检查的总体框架;再次,采用Word2Vec技术将代码转换为词向量序列,对循环神经网络(RNN)模型进行了训练,从而实现对软件漏洞的自动检测;最后,在TensorFlow框架下构建了检测模型,并利用NVD数据集进行了实验验证。实验结果表明,所提方法在准确率、精确率、召回率和F1-score等指标上表现出良好效果。 Aiming at the problem of software vulnerability mining,this paper discusses a vulnerability detection method based on deep learning.First of all,this paper analyzes the commonly used vulnerability mining methods.Secondly,this research designs the overall framework of software vulnerability detection.Then,this research uses Word2Vec technology to convert the code into word vector sequence,the recurrent neural network(RNN)model is trained to automatically detect software vulnerabilities.Finally,the detection model is built under the TensorFlow framework,and the NVD data set is used to verify in the experiments.The experimental results show that the proposed method performs well in accuracy,accuracy,recall and F1-score.
作者 徐圣林 XU Shenglin(China Pharmaceutical University,Nanjing 211198,China)
机构地区 中国药科大学
出处 《无线互联科技》 2024年第20期95-97,112,共4页 Wireless Internet Science and Technology
关键词 深度学习 循环神经网络 词向量 软件漏洞 deep learning recurrent neural network word vector software vulnerability
  • 相关文献

参考文献10

二级参考文献58

  • 1张锋,许云,侯艳,樊孝忠.基于互信息的中文术语抽取系统[J].计算机应用研究,2005,22(5):72-73. 被引量:36
  • 2Bourigault D. Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases [C]. In: Proceedings of the 14th Conference on Computational Linguistics. Association for Computational Linguistics, 1992: 977-981. 被引量:1
  • 3Justeson J S, Katz S M. Technical Terminology: Some Linguistic Properties and an Algorithm for Identification in Text [J]. Natural Language Engineering, 1995, 1 (1): 9-27. 被引量:1
  • 4Ananiadou S. A Methodology for Automatic Term Recognition [C]. In: Proceedings of the 15th Conference on Computational Linguistics. Association for Computational Linguistics, 1994: 1034-1038. 被引量:1
  • 5Frantzi K, Ananiadou S, Mima H. Automatic Recognition of Multi-word Terms: The C-value/NC-value Method [J]. International Journal on Digital Libraries, 2000, 3(2): 115-130. 被引量:1
  • 6ManningCD,SchutzeH.统计自然语言处理基础[M].范春法译.第4版.北京:电子工业出版社,2005:95-97. 被引量:1
  • 7Takeuchi K, Collier N. Use of Support Vector Machines in Extended Named Entity Recognition [C]. In: Proceedings of the 6th Conference on Natural Language Learning. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002: 1-7. 被引量:1
  • 8Lafferty J D, McCallum A, Pereira F C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data [C]. In: Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2001:282-289. 被引量:1
  • 9Lee C M, Huang C K, Tang K M, et al. IterativeMachine-Learning Chinese Term Extraction [C]. In: Proceedings of the 14th International Conference on Asia-Pacific Digital Libraries (1CADL 2012), Taipei, China. Berlin: Springer, 2012:309-312. 被引量:1
  • 10Mikolov T. Word2vec Code [CP/OL]. [2015-09-18]. http:// word2vec.googlecode.com/svn/trunk/. 被引量:1

共引文献453

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部