期刊文献+

空洞卷积胶囊网络环境中的激光雷达点云数据分类处理方法

Classification and processing method of lidar point cloud data in a cavity convolutional capsule network environment
下载PDF
导出
摘要 空洞卷积胶囊网络环境中,激光雷达点云数据分类处理方法在数据采样后存在数据分辨率下降、数据丢失的问题,导致最终分类结果较差。为此,研究空洞卷积胶囊网络环境中的激光雷达点云数据分类处理方法。对激光雷达点云数据进行空洞卷积预处理,在分析其光谱特征的条件下执行分类指令,进一步划分分类信息,获取清晰完整的分类数据,由此增强整体分类效果。根据分析的实验结果可知,该处理方法的错误分类面积较小,分类精度较高,总体分类精度为99.67%,这表明该方法能够有效实现激光雷达点云数据分类处理。 In the hollow convolutional capsule network environment,the data classification processing method of lidar point cloud has the problems of data resolution degradation and data loss after data sampling,resulting in poor final classification results.Therefore,the classification processing method of lidar point cloud data in the cavity convolutional capsule network environment is studied.The hole convolution preprocessing of lidar point cloud data is carried out,and the classification instruction is executed under the condition of analyzing its spectral characteristics,and the classification information is further divided to obtain clear and complete classification data,thereby enhancing the overall classification effect.According to the experimental results of the analysis,the error classification area of the processing method is small,the classification accuracy is high,and the overall classification accuracy is 99.67%,which indicates that the method can effectively realize the classification processing of lidar point cloud data.
作者 陈雨 陈亮 CHEN Yu;CHEN Liang(RCG Geosystems(Beijing)Co.,Ltd.,Beijing 100125,China)
出处 《电子设计工程》 2024年第22期31-36,共6页 Electronic Design Engineering
关键词 空洞卷积技术 卷积胶囊网络环境 激光雷达 点云数据 数据分类 cavity convolution technology convolutional capsule network environment lidar point cloud data data classification
  • 相关文献

参考文献16

二级参考文献118

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部