期刊文献+

融合多边形拟合与凹点匹配的黏连重叠矿石图像分割算法

A Segmentation Algorithm for Adhesive Overlapping Ore Images Based on Polygon Fitting and Concave Point Matching
下载PDF
导出
摘要 用选矿机进行矿物分选可以提高目标矿物的含量,从而优化资源利用,提高生产效率,在矿业领域中具有重要意义与价值,但分选过程中通过X射线透射技术所得的矿石图像会存在目标黏连及重叠的情况,这将严重影响矿物分选效率及精度,获取独立矿石图像是使用该方法对矿石进行识别、定位、分选的必要条件。为提高矿物分选精度与效率,提出了一种基于多边形拟合的凹点检测与匹配算法用于分割黏连矿石图像。首先,将矿石二值图像拟合为多边形图像并从图像拐点中甄别出凹点;其次,利用拐点构建直线方程形成检测区域,在该区域内搜寻凹点的待连接点,完成凹点匹配;最后,将计算机视域由二值图转移至灰度图,通过分析待分割区域的灰度值判断该区域是否为矿石间实际黏连处,从而决定是否执行分割操作。试验结果表明,算法在黏连矿石数据集上的总体分割准确率为93.60%,凹点噪声率仅为5.23%,处理尺寸为281×336的图像平均计算时间低至5.13 ms,检测效率最高可提升220倍以上,其噪声凹点滤除能力、凹点检测精度、分割准确率、算法运行速率均优于同类算法,对不同黏连数量及不同黏附形式的矿石图像均展现出较强的分割稳定性。 The use of a beneficiation machine for mineral sorting can increase the content of target minerals,optimize resource utilization,and improve production efficiency,which is of great significance and value in the mining field.However,during the sorting process,the ore images obtained through X-ray transmission technology may have target adhesion and overlap,which will seriously affect the efficiency and accuracy of mineral sorting.Obtaining an independent ore image is a necessary condition for using the method to identify,locate and sort the ore.To improve the accuracy and efficiency of mineral sorting,a concave point detection and matching algorithm based on polygon fitting is proposed for segmenting adhesive ore images.Firstly,fitting a binary image of the ore into a polygon image and identifying concave points from the turning point of the image.Secondly,constructing a linear equation by using a turning point to form a detection area,searching the to-be-connected points of the concave points in the area,and completing concave point matching.Finally,the computer view is transferred from the binary image to the gray image,and the gray value of the region to be segmented is analyzed to determine whether the region is the actual adhesion between ores,so as to determine whether to execute the segmentation operation.The results show that the overall segmentation accuracy of the algorithm on the adhesive ore dataset is 93.60%,the concave noise rate is only 5.23%,and the average calculation time for processing images with a size of 281×336 is as low as 5.13 ms.Its noise concave filtering ability,concave detection accuracy,segmentation accuracy,and algorithm running speed are all better than those of similar algorithms.It shows strong segmentation stability for ore images with different adhesive quantities and forms.
作者 何一东 陈锐 吴泽彬 钟崇贵 王静 HE Yidong;CHEN Rui;WU Zebin;ZHONG Chonggui;WANG Jing(School of Mechanical and Electronic Engineering,East China University of Technology,Nanchang 330013,China;School of Education Science,Xinjiang Normal University,Urumqi 830017,China)
出处 《有色金属(选矿部分)》 CAS 2024年第10期94-104,132,共12页 Nonferrous Metals(Mineral Processing Section)
基金 国家自然科学基金资助项目(12365026) 江西省重点研发计划项目(20232BBE50013) 抚州市揭榜挂帅项目(XMBH00016)。
关键词 矿石图像分割 X射线透射 多边形拟合 凹点检测与匹配 区域搜寻 预分割检测 ore image segmentation X-ray transmission polygon fitting concave point detection and matching region search pre segmentation detection
  • 相关文献

参考文献7

二级参考文献100

  • 1温海滨,贾瑞强.计算机图像处理技术在选矿粒度在线检测中的应用初探[J].中国钼业,2005,29(1):22-25. 被引量:3
  • 2高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 3Simphiwe Mkwelo. A machine vision-based approach to mea- suring the size distribution of rocks on a conveyor belt [D]. South Africa: University of Cape Town, 2004. 被引量:1
  • 4AI Thyabat S, Miles N J, Koh T S. Estimation of the size dis- tribution of particles moving on a conveyor belt [J]. Minerals Engineering, 2007, 20 (1) : 72-83. 被引量:1
  • 5Zelin Zhang, Jianguo Yang, Lihua Ding, et al. An improved estimation of coal particle mass using image analysis [J]. Pow-der Technology, 2012, 229 (1): 178-184. 被引量:1
  • 6WANG Weixing, Bergholm F. Fragment size estimation wit- hout image segmentation [J]. Imaging Science Journal, 2008, 56 (2): 91-96. 被引量:1
  • 7Amankwah A, Aldrich C. Automatic ore image segmentation using mean shift and watershed transform [C] //21st International Con- ference, Brno, Czech Republic: IEEEPress, 2011: 1-4. 被引量:1
  • 8Amankwah A, Aldrich C. Automatic estimation of rock parti- culate size on conveyer belt using image analysis. [C] //Pro- ceedings of the SHE-The International Society for Optical Engi- neering. Cairo, Egypt: SPlEPress, 2011: 1-8. 被引量:1
  • 9WANG Weixing. Rock particle image segmentation and sys- tems [ M ]. Yin PengYeng. Vienna: Pattern Recognition Techniques, Technology and Applications, 2008: 197-226. 被引量:1
  • 10Mukherjee D P, Potapovich Y, Levner I, et al. Re image seg- mentation by learning image and shape features [J]. Pattern Recognition Letters, 2009, 30 (6): 615-622. 被引量:1

共引文献630

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部