期刊文献+

Asymptotic Dynamics of a Single-species Model with Resource-dependent Dispersal in One Dimension

一维空间中具有资源依赖扩散的单物种模型的渐近动力学
下载PDF
导出
摘要 In this paper,we study the asymptotic dynamics of a single-species model with resource-dependent dispersal in one dimension.To overcome the analytical difficulties brought by the resource-dependent dispersal,we use the idea of changing variables to transform the model into a uniform dispersal one.Then the existence and uniqueness of positive stationary solution to the model can be verified by the squeezing argument,where the solution plays a crucial role in later analyses.Moreover,the asymptotic behavior of solutions to the model is obtained by the upper-lower solutions method.The result indicates that the solutions of the model converge to the corresponding positive stationary solution locally uniformly in one dimension as time goes to infinity. 本文研究一维空间中具有资源依赖扩散的单物种模型的渐近动力学.为了克服资源依赖扩散带来的分析困难,利用变量替换的思想将上述模型转变为一致扩散的模型.然后,采用夹挤方法获得模型正稳态解的存在唯一性,这个解在后面的分析中具有至关重要的作用.进一步,使用上下解方法得到模型解的渐近性行为.研究结果表明:在一维空间中,当时间趋向于无穷大时,模型解会局部一致地收敛到相应的正稳态解.
作者 Huang Yun Zhang Dawei 黄赟;张大为(仲恺农业工程学院数学与数据科学学院,广州510225;佛山大学数学学院,佛山528000)
出处 《数学理论与应用》 2024年第3期11-24,共14页 Mathematical Theory and Applications
基金 supported by the National Natural Science Foundation of China (Nos.12301101,12101121) the Guangdong Basic and Applied Basic Research Foundation (Nos.2022A1515110019,2020A1515110585)。
关键词 Asymptotic dynamics Resource-dependent dispersal Stationary solution Upper-lower solutions method 渐近动力学 资源依赖扩散 稳态解 上下解方法
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部