期刊文献+

A data-driven approach for predicting the fatigue life and failure mode of self-piercing rivet joints

原文传递
导出
摘要 In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints.
出处 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第3期538-555,共18页 先进制造进展(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.52205377) the Key Basic Research Project of Suzhou(Grant Nos.SJC2022029,SJC2022031) the National Key Research and Development Program(Grant No.2022YFB4601804).
  • 相关文献

参考文献2

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部