期刊文献+

基于多技术融合的煤矿掘进机状态监测与维修工艺研究

Research on State Monitoring and Maintenance Technology of Coal Mine Excavator Based on Multi technology Integration
下载PDF
导出
摘要 本文旨在探讨多技术融合在煤矿掘进机状态监测与维修中的应用,通过集成振动、温度、压力传感器及视觉传感技术,结合机器学习算法,实现了设备健康状态的智能诊断。实验结果显示,多传感器融合诊断方法的故障检出率高达98.2%,平均预警时间提前至5.8天,显著提升了设备的可用率并降低了维修成本。 This article aims to discuss the application of multi-technology integration in the condition monitoring and maintenance of coal mining roadheaders.By integrating vibration,temperature,pressure sensors,and vision sensing technologies,combined with machine learning algorithms,intelligent diagnosis of equipment health status is achieved.Experimental results show that the fault detection rate of the multi-sensor fusion diagnostic method reaches as high as 98.2%,with an average early warning time advanced to 5.8 days,significantly improving the availability of the equipment and reducing maintenance costs.
作者 刘实 陈忠越 付洪磊 赵岩 LIU Shi;CHEN Zhongyue;FU Hongei;ZHAO Yan(Yankuang Energy Group Co.,Ltd.,Xinglongzhuang Coal Mine,Jining Shandong 272000,China)
出处 《信息与电脑》 2024年第16期58-60,65,共4页 Information & Computer
关键词 煤矿掘进机 状态监测 故障诊断 智能维修 coal mine boring machine status monitoring fault diagnosis intelligent maintenance
  • 相关文献

参考文献5

二级参考文献18

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部