摘要
一种新型粉块层级转子结构可有效提高高速永磁电机转子强度。为了准确分析新型复合转子结构强度,需要准确预测转子复合磁性材料的力学性能。该文将新型磁粉胶膜复合材料看作由磁粉颗粒、界面和基体组成的三相复合材料,首先基于蒙特卡罗法构建了Abaqus-Python耦合的代表性体积单元参数化模型,然后依据细观力学等效三相球模型推导出界面层的弹性模量,最后基于虚功原理创建磁粉胶膜弹性模量有限元预测模型,并与拉伸试验结果进行比较分析,验证了模型的准确性。在此基础上,研究了细观结构和界面参数对磁粉胶膜弹性模量的影响规律,得到了磁性材料细观结构与力学性能的映射关系。
The tensile strength of the conventional surface mount HSPMM(High-speed permanent magnet motor)rotor's permanent magnet is significantly low,posing a bottleneck for developing HSPMM.A novel composite rotor structure incorporating a powder block layer can effectively enhance the rotor strength of HSPMMs.The mechanical properties of these new composite magnetic materials play a crucial role in ensuring the structural strength and performance of magnetic components.Unlike traditional HSPMM rotors,the composite rotor structure consists of multiple layers of composite magnetic materials,necessitating a different approach to accurately analyze its mechanical strength.This paper employs micromechanics and finite element method techniques to predict the elastic modulus of magnetic composites based on an equivalent three-phase spherical model.Furthermore,the influence of microstructure,interface parameters,and magnetic powder grade on the elastic modulus of the magnetic powder film(MPF)is studied,and a mapping relationship between microstructure and mechanical properties is established.Firstly,a representative volume element(RVE)calculation model is constructed for the MPF to capture its real microstructure.From a microscopic perspective,MPF is regarded as a three-phase composite material comprising magnetic particles,interface layers,and resin matrix.The Monte-Carlo method and Python language are utilized to develop the Abaqus software kernel for automating random particle generation,Boolean cutting and merging operations,and grid division.By adjusting parameters such as particle size,gradation,group distribution ratio,and interface layer thickness,mesoscale models representing different magnetic powder components are generated to establish the mapping relationship between mesoscopic structure and material properties.Secondly,the parameters of the interface in the RVE model are determined using elastic mechanics theory and Eshelby equivalent theory based on critical magnetic particle content.Crucial information,such as t
作者
王天煜
杨璐铭
白斌
宇秋红
张岳
Wang Tianyu;Yang Luming;Bai Bin;Yu Qiuhong;Zhang Yue(School of Mechanical and Energy Engineering,Shanghai Technical Institute of Electronics&Information,Shanghai 201411,China;School of Mechanical Engineering,Shenyang Institute of Technology,Shenyang 110136,China;Shenyang Yuheng Technology Co.Ltd,Shenyang 110122,China;School of Electrical Engineering,Shandong University,Jinan 250100,China)
出处
《电工技术学报》
EI
CSCD
北大核心
2024年第20期6305-6315,共11页
Transactions of China Electrotechnical Society
基金
国家自然科学基金项目(52077121)
辽宁省科技计划联合基金项目(2023-MSLH-215)
辽宁省教育厅基本科研项目(JYTMS20230297)资助。
关键词
高速电机
复合转子
磁性复合材料
弹性模量
数值仿真
High-speed motor
composite rotor
composite magnetic materials
elastic modulus
numerical simulation