期刊文献+

FFDEZOA优化的SCARA机器人故障数据聚类分析

FFDEZOA Optimized Clustering Analysis of SCARA Robot Fault Data
下载PDF
导出
摘要 针对现有聚类方法对机器人故障数据聚类时对初始点选取依赖性大、收敛速度慢且精度低等问题,提出了一种FFDEZOA算法来对KMC聚类算法进行优化。ZOA算法具有寻优能力较强,收敛速度快,且在聚类时对初始点选取依赖性小,但其有几率会陷入到局部最优解。首先针对ZOA算法的缺点,提出了自由觅食策略、非线性收敛因子及斑马进化策略等来对其进行改进,能够有效提高算法搜索范围,从而避免局部最优;进而结合FFDEZOA和KMC算法的互补迭代,既加快了算法的搜索速度,也提升了精度。在多个公开数据集上的实验表明,FFDEZOA KMC在精确度和归一化互信息的指标上均优于ZOA KMC、AO KMC、KMC和MFO KMC,具有更好的收敛性能和聚类效果。最后依据各故障特征的主成分不同,利用FFDEZOA KMC对故障数据进行了聚类,可在多种工况下对机器人进行针对性的保养和维护。 A FFDEZOA algorithm is proposed to optimize the KMC clustering algorithm in response to the problems of high dependence on initial point selection,slow convergence speed,and low accuracy in existing clustering methods for robot fault data clustering.The ZOA algorithm has strong optimization ability,fast convergence speed,and little dependence on initial point selection during clustering,but it has a chance of falling into local optimal solutions.Firstly,in response to the shortcomings of the ZOA algorithm,free foraging strategy,nonlinear convergence factor,and zebra evolution strategy were proposed to improve it,which can effectively increase the search range of the algorithm and avoid local optima;furthermore,combining the complementary iteration of FFDEZOA and KMC algorithms not only accelerates the search speed of the algorithm,but also improves accuracy.Experiments on multiple public datasets have shown that FFDEZOA KMC outperforms ZOA KMC,AO KMC,KMC,and MFO KMC in terms of accuracy and normalized mutual information,with better convergence performance and clustering performance.Finally,based on the different principal components of each fault feature,FFDEZOA KMC was used to cluster the fault data,which can provide targeted maintenance and upkeep for robots under various working conditions.
作者 苑浩德 付庄 金惠良 YUAN Haode;FU Zhuang;JIN Huiliang(State Key Laboratory of Mechanical Systems and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《机械与电子》 2024年第10期69-75,共7页 Machinery & Electronics
基金 深圳市科创委技术攻关重点项目(JSGG20200701095003006) 基础加强计划项目(2020-JCJQ) 国家自然科学基金面上项目(61973210)。
关键词 k means聚类算法 斑马算法 SCARA机器人 差分进化 k means clustering algorithm zebra algorithm SCARA robot differential evolution
  • 相关文献

参考文献11

二级参考文献92

  • 1张强,李盼池.一种自适应多策略行为粒子群优化算法[J].控制与决策,2020,35(1):115-122. 被引量:23
  • 2HIRST, GRAEME. Semantic interpretation and the iesolution of ambiguity [M]. Cambridge University Press, 1998. 被引量:1
  • 3MCROY, SUSAN W. Using multiple knowledge sources for word sense discrimination[J]. Computational Linguistics, 1992,18 ( 1 ) : 1 -30. 被引量:1
  • 4NG, HWEE TOU, HIAN BENG LEE. Integrating multiple knowl-edge sources to disambiguate word sense: an exemplar-based ap- proach[C]. In proceedings of 34th Annual Meeting of the Associa- tion for Computational Linguistics, 1996. 被引量:1
  • 5DAGON, IDO , ALON ITAI. Word sense disambiguation using a second language monolingual corpus [J].Computational Linguis- tics,1994, 20(4): 563- 596. 被引量:1
  • 6YAROWSKY, DAVID. Word -sense disambiguation using statis- tical models of roget's categories trained on large eorpora[C]. In Proceedings of the 14th International Conference on Computational Linguistics (COLING- 92), 1992. 被引量:1
  • 7YAROWSKY, DAVID. Unsupervised word sense disambiguation rivaling supervised methods[C]. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, 1995. 被引量:1
  • 8CORMEN, THOMAS H, CHARLES E LEISERSON, et al. In- troduction to Algorithms[M]. 3rd ed. The MIT Press, 1992. 被引量:1
  • 9GALE W A , K W CHURCH, D YAROWSKY. One sense per discourse[C]. In Proceedings of the 4th DARPA Speech and Nat- ural Language Workshop , 1992. 被引量:1
  • 10陶新民,徐晶,杨立标,刘玉.一种改进的粒子群和K均值混合聚类算法[J].电子与信息学报,2010,32(1):92-97. 被引量:79

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部