期刊文献+

基于SARIMA-RF组合模型的西安中欧班列预测及发展对策

Prediction and Development Strategies of Xi'an China Railway Express Based on the SARIMA-RF Combination Model
下载PDF
导出
摘要 为提升西安中欧班列开行车数预测精度和泛化能力,综合考虑西安中欧班列时间序列数据的线性和非线性特征,提出基于SARIMA-RF组合模型的班列开行车数预测方法。首先使用季节性自回归移动平均模型(SARIMA)预测开行车数,其次利用随机森林(RF)模型校正残差,构建组合模型,最后将组合模型与ARIMA、SARIMA、RF、XGBoost进行对比。使用2014-2023年西安中欧班列月度开行数据实验,预测2024年开行车数为24.40万车,2025年为26.71万车,对比结果表明:组合模型的M_(SE)、R_(MSE)、M_(AE)、M_(APE)分别为0.0037、0.0610、0.0530、3.41%,比其他模型精度更高。 To improve the prediction accuracy and generalization ability of the number of trains operating on the Xi'an China Railway Express,a prediction method of train number in operation based on the SARIMA-RF combination model was proposed,comprehensively taking into account the linear and nonlinear characteristics of the time series data of the Xi'an China Railway Express.Firstly,the seasonal autoregressive moving average(SARIMA)model was used to predict the number of vehicles in operation.Secondly,the random forest(RF)model was used to correct the residuals and construct a combination model.Finally,the combination model was compared with ARIMA,SARIMA,RF and XGBoost.The monthly operating data of the Xi'an China Railway Express from 2014 to 2023 was used to carry out the experiment.The experiment predicts that the number of vehicles operating in 2024 will be 244000 and 267100 in 2025.The comparison results show that the M_(SE),R_(MSE),M_(AE),and M_(APE)of the combination model are 0.0037%,0.0610%,0.0530%,and 3.41%,respectively,which are higher in accuracy than other models.
作者 黄宝静 马骏 余元玲 HUANG Baojing;MA Jun;YU Yuanling(China Academy of Railway Sciences Corporation Limited,Beijing 100081;China Railway Xi'an Group Corporation Limited,Xi'an 710054,Shaanxi,China;International College,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第10期90-96,共7页 Journal of Chongqing Jiaotong University(Natural Science)
基金 陕西省重点研发计划项目(2024GX-YBXM-536) 中国国家铁路集团有限公司科技研究开发计划课题(N2023X041) 中国铁路西安局集团有限公司科技研究开发计划课题(K2023013)。
关键词 交通运输工程 “长安号”中欧班列 季节性波动 SARIMA-RF 残差校正 发展对策 traffic and transportation engineering “Chang'an”China Railway Express seasonal fluctuations SARIMA-RF residual correction development strategies
  • 相关文献

参考文献10

二级参考文献104

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部