期刊文献+

基于数据驱动核极限学习机的风光容量配置方案研究

Research on wind solar capacity configuration scheme based on data driven kernel extreme learning machine
下载PDF
导出
摘要 风光发电的大量接入,将引起配电网规划与运行特征的根本性改变,因而研究配电网中风光发电的选址定容问题具有重要意义。先利用数据驱动构建基于核极限学习机的容量选择模型;再以总投资成本和网络损耗最小为目标函数,以电压稳定性为评价指标对容量配置结果进行评估;最后采用IEEE 33节点系统作为算例进行仿真,将结果分别与支持向量机、粒子群和遗传算法进行比较。结果表明该容量配置方案能够起到节约成本、降低网络损耗及提高网络电压水平的作用,并能够为新能源接入配电网的投资方案提供一定的参考。 The extensive integration of wind and solar power generation will fundamentally change the planning and operational characteristics of the distribution network,therefore,studying the site selection and capacity determination of wind and solar power generation in the distribution network is of great significance.Firstly,a capacity selection model based on kernel extreme learning machine is constructed using data-driven approach;Then,the capacity allocation results are evaluated with the objective function of minimizing total investment cost and network loss,and voltage stability as the evaluation index;Finally,the IEEE 33 node system was used as an example for simulation,and the results were compared with support vector machine,particle swarm optimization,and genetic algorithm.The results show that the capacity configuration scheme obtained through this method can achieve cost savings,reduce network losses,improve network voltage stability,and provide certain reference for investment scheme of new energy access to distribution networks.
作者 涂菁菁 赵鹏 邹伟东 TU Jingjing;ZHAO Peng;ZOU Weidong(China Energy Engineering Group Investment Co.,Ltd.,Beijing 100122,China;School of Automation,Beijing Institute of Technology,Beijing 100081,China)
出处 《电气应用》 2024年第10期32-38,共7页 Electrotechnical Application
基金 国家自然科学基金青年基金资助项目(61906015)。
关键词 配电网 数据驱动 核极限学习机 有功损耗 电压稳定 distribution network data driven kernel extreme learning machine active power loss voltage stability
  • 相关文献

参考文献7

二级参考文献101

  • 1黄文美,郭万里,郭萍萍,夏志玉.基于多目标遗传算法的高频磁致伸缩换能器优化设计[J].仪器仪表学报,2022,43(1):111-119. 被引量:4
  • 2王成山,郑海峰,谢莹华,陈恺.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44. 被引量:289
  • 3McDermott T E, Dugan R C. PQ, reliability and DG [J]. IEEE Magazine on Industry Application, 2003, 9(5): 17-23. 被引量:1
  • 4Bastiao F, Cruz P, Feteiro R. Impact of distributed generation on distribution networks[C]// Proceedings of IEEE Conference on European Electricity Market. Lisbon, Portugal, 2008: 1-6. 被引量:1
  • 5Li Gengyin, Zhang Zhe, Li Xiang, et al. A methodology for evaluation of power quality in distribution network with distributed generation[C]//Proceeding of IEEE Conference on Critical Infrastructures. Beijing, China, 2010: 1-6. 被引量:1
  • 6Su C L. Stochastic evaluation of voltages in distribution networks with distributed generation using detaileddistribution operation models[J]. IEEE Trans. on Power Systems, 2010, 25(2): 786-795. 被引量:1
  • 7Ackerman T. Wind power in power systems[M]. New York: John Wiley& Sons, Inc., 2005: 55-57, 670-672. 被引量:1
  • 8Jorgensen P, Christensen J S, Tande J O. Probabilistic load flow calculation using Monte Carlo techniques for distribution network with wind turbines[C]//Proceedings of IEEE Conference on Harmonics and Quality of Power. Athens, Greece, 1998: 1146-1151. 被引量:1
  • 9Rodrigues A B, Da Silva M G. Probabilistic assessment of available transfer capacity based on Monte Carlo method with sequential simulation[J]. IEEE Trans. on Power Systems, 2007, 22(1): 484-492. 被引量:1
  • 10Schellenberg A, Rosehart W, Aguado J. Cumulant-based probabilistie optimal power flow (P-OPF) with Gaussian and Gamma distributions[J]. IEEE Trans. on Power Systems, 2005, 20(2): 773-781. 被引量:1

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部