期刊文献+

Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods

原文传递
导出
摘要 The application of steel strut force servo systems in deep excavation engineering is not widespread,and there is a notable scarcity of in-situ measured datasets.This presents a significant research gap in the field.Addressing this,our study introduces a valuable dataset and application scenarios,serving as a reference point for future research.The main objective of this study is to use machine learning(ML)methods for accurately predicting strut forces in steel supporting structures,a crucial aspect for the safety and stability of deep excavation projects.We employed five different ML methods:radial basis function neural network(RBFNN),back propagation neural network(BPNN),K-Nearest Neighbor(KNN),support vector machine(SVM),and random forest(RF),utilizing a dataset of 2208 measured points.These points included one output parameter(strut forces)and seven input parameters(vertical position of strut,plane position of strut,time,temperature,unit weight,cohesion,and internal frictional angle).The effectiveness of these methods was assessed using root mean square error(RMSE),correlation coefficient(R),and mean absolute error(MAE).Our findings indicate that the BPNN method outperforms others,with RMSE,R,and MAE values of 72.1 kN,0.9931,and 57.4 kN,respectively,on the testing dataset.This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering,contributing to enhanced safety measures and project planning.
出处 《Underground Space》 SCIE EI CSCD 2024年第5期114-129,共16页 地下空间(英文)
基金 supported by the National Natural Science Foundation of China(Grant No.51778575).
  • 相关文献

参考文献7

二级参考文献106

  • 1John A. Hudson.Design methodology for the safety of underground rock engineering[J].Journal of Rock Mechanics and Geotechnical Engineering,2012,4(3):205-214. 被引量:3
  • 2Bakhshandeh H, Mozdianfard MR, Siamaki A. Predicting of blasting vibra?tions in Sarcheshmeh copper mine by neural network. Safety Science 2010;48(3 ):319-25. 被引量:1
  • 3Cai JG, Zhao j. Use of neural networks in rock tunneling. In: Proceedings of the 9th international conference on computer methods and advances in geomechanics. A.A. Balkema: Rotterdam; 1997. p. 629-34,. 被引量:1
  • 4Christodoulou C, Georgiopoulos M, Applications of neural networks in electromag?netics. Norwood, MA, USA: Artech House Publishers; 2001. 被引量:1
  • 5Demuth H, Beale M. Neural network toolbox user's guide. Natick, MA, USA: The Math Work, Inc; 1994. 被引量:1
  • 6Gates W, Ortiz LT, Florez RM. Analysis of rockfall and blasting backbreak problems. In: Proceedings of the 40th u.s. symposium on rock mechanics. Alexandria, VA: American Rock Mechanics Association; 2005. p. 671-80. 被引量:1
  • 7Haykin S. Neural networks: a comprehensive foundation. Upper Saddle River, NJ: Prentice-Hall; 1999. 被引量:1
  • 8Iimeno CL, Jimeno EL, Carcedo FJA. Drilling and blasting of rocks. Rotterdam: A.A. Balkema; 1995. 被引量:1
  • 9Khandelwal M, Singh TN. Prediction of blast induced air overpressure in opencast mine. Noise Vibration Worldwide 2005;36(2):7-16. 被引量:1
  • 10Khandelwal M, Singh TN. Prediction of blast induced ground vibrations and fre?quency in opencast mine: a neural network approach. Journal of Sound and Vibration 2006;289(4):711-25. 被引量:1

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部