期刊文献+

基于改进的微信点餐推荐系统设计

Design of Wechat Order Recommendation System Based on Improved Collaborative Filtering Algorithm
下载PDF
导出
摘要 针对基于经典协同过滤算法的点餐推荐系统中的数据稀疏性问题,通过加入Apriori关联规则算法并融合基于内容的相似度,进行菜品评分预测,填充评分矩阵,降低数据的稀疏度;并结合点餐个性化需求,设置基于人数的推荐标准,进一步过滤推荐列表;经与User-CF、Item-CF的对比实验,改进后的系统有效地解决了经典协同过滤算法中的数据稀疏性问题,推荐效果更好和很好的泛化性能。 In order to solve the problem of data sparsity in order-to-order recommendation system based on classical collaborative filtering algorithm,Apriori Association rule algorithm is added and the similarity degree based on content is fused to predict the food score,fill the score matrix and reduce the sparsity of the data;Combined with the personalized needs of meal ordering,the recommendation standard based on the number of people is set to further filter the recommendation list.After the comparison experiment with User-CF and Item-CF,the improved system effectively solves the problem of data sparsity in the classical collaborative filtering algorithm,and has better recommendation effect and good generalization performance.
作者 饶刘维 叶强胜 代世佳 陈兴文 Rao Liuwei;Ye Qiangsheng;Dai Shijia;Chen Xingwen(School of Information and Communication Engineering,Dalian Minzu University,Dalian Liaoning 116600,China)
出处 《山西电子技术》 2024年第5期84-85,102,共3页 Shanxi Electronic Technology
关键词 推荐系统 Apriori关联规则 人数推荐 recommendation system Apriori association rules recommended number of people
  • 相关文献

参考文献5

二级参考文献45

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部