摘要
混凝土坝参数识别是评价其运行状态的关键。为进一步提高参数识别的效率和精度,提出一种基于多输出孪生支持向量机(MTSVR)和改进雪消融优化器(ISAO)的混凝土坝参数反演方法。通过训练MTSVR模型模拟待反演参数与位移静水压分量之间的非线性关系以代替复杂的有限元计算。采用ISAO对目标参数进行寻优反演。工程实例分析表明,代理模型计算结果与有限元计算结果基本一致。与传统元启发优化相比,ISAO寻优收敛速度更快,准确度更高,单次参数反演用时更少。结果说明构建的反演方法可在保持计算精度前提下有效提高计算效率,方法具有有效性和实用性,为工程真实参数辨识提供参考。
Parameter identification of a concrete dam is the key to evaluating its behaviors.To further improve the efficiency and accuracy of parameter inversion,this paper develops a novel inversion strategy for concrete dam parameters based on the multi-output twin support vector regression(MTSVR)and the improved snow ablation optimization(ISAO).A nonlinear relationship of the parameters to be inverted versus the hydrostatic pressure component of displacement is simulated by training the MTSVR model,in place of complex finite element calculations;ISAO is used for optimizing the inversion of the target parameters.Analysis of engineering examples shows that the results of this surrogate model basically agree with those of the finite element calculations,ISAO has faster convergence and higher accuracy than the traditional meta-inspired optimization,and the computational cost of single parameter inversion is lower.This verifies that our new inversion strategy effectively improves computational efficiency while maintaining the computational accuracy,and that the method is effective,practical and useful for the parameter identification of actual projects.
作者
曹文翰
马琳
苏怀智
CAO Wenhan;MA Lin;SU Huaizhi(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210024,China;The National Key Laboratory of Water Disaster Prevention,Hohai University,Nanjing 210024,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China)
出处
《水力发电学报》
CSCD
北大核心
2024年第10期97-106,共10页
Journal of Hydroelectric Engineering
基金
国家自然科学基金项目(52239009)。
关键词
混凝土坝
力学参数反演
多输出孪生支持向量机
改进雪消融优化
代理模型
concrete dam
parameter inversion
multi-output twin support vector regression
improved snow ablation optimization
surrogate model