摘要
振动台子结构试验是一种有效的实时结构混合试验方法,利用振动台和其他加载装置进行联合加载,可以提升振动台的加载能力。针对试验过程中受到干扰影响的振动台子结构试验控制系统,提出一种基于Smith预估器的控制方法。介绍了基于主动质量驱动器加载方法的振动台子结构试验装置和工作原理以及Smith预估器的实现方式。分析了时滞对控制系统的影响,当控制系统引入4 ms的时滞时,仿真结果发散,系统模型存在纯滞后环节,因此容易发生较严重的震荡。为解决此问题,引入Smith预估器与改进的Smith预估器并进行相应的数值仿真工作。仿真结果表明:基于传统Smith预估器的振动台子结构试验方法能够保证系统仿真结果不再发散,但其结果较为一般;而基于改进Smith预估器的振动台子结构试验方法结果更为理想,其峰值误差与均方根误差等相关评价指标都相对较小,说明所提方法可以有效解决时滞系统的稳定性问题。
Shaking table substructure test is an effective real-time structural hybrid testing method,which can enhance the loading capacity of the shaking table by utilizing the shaking table and other actuator devices.A control method based on Smith predictor was proposed for the shaking table substructure testing control system affected by disturbances during the test.The equipment and the operating principle of the shaking table substructure test based on the active mass driver system were introduced,as well as the implementation of the Smith predictor.The effect of delay on the control system was analyzed,when a delay of 4 ms was added to the control system,the simulation results were diverged.Meanwhile,there was a pure lag in the system model,so it easily produced serious oscillations.To solve this problem,the traditional Smith predictor and the improved Smith predictor were introduced,accompanied by relevant numerical simulations.The simulation results demonstrate that the shaking table substructure testing method based on the traditional Smith predictor can ensure that the system simulation results do not diverge,albeit the results are rather general.In contrast,the shaking table substructure testing method based on the improved Smith predictor yields more desirable results,with smaller peak errors,root mean square errors and other related evaluation indicators.This indicates that the method can effectively solve the stability issues in the delay system.
作者
纪金豹
徐建琛
王东岳
JI Jinbao;XU Jianchen;WANG Dongyue(Beijing Key Lab of Earthquake Engineering and Structural Retrofit,Beijing University of Technology,Beijing 100124,China)
出处
《机床与液压》
北大核心
2024年第18期14-21,共8页
Machine Tool & Hydraulics
基金
国家自然科学基金面上项目(51978015,51578024)。