摘要
The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise for aqueous zinc-ion batteries in such a specific situation.However,the metal corrosion,dendrite growth,and hydrogen evolution stand out in the harsh seawater environment.To address these challenges,we proposed a corrosion inhibitor that was effective in the field of metal anti-corrosion,2-phosphonobutane-1,2,4-tricarboxylic acid(PBTCA),to inhibit anode corrosion caused by Cl-and active H_(2)O molecules by forming a stable solid electrolyte interphase(SEI)film in the seawater-based electrolyte.Besides,PBTCA can chelate with other cations present in seawater,such as Ca^(2+)and Mg^(2+),thereby preventing the aggregation and precipitation of sparingly soluble species.Under a current density of5 mA cm^(-2),the seawater-based zinc-ion battery exhibited an exceptional cycle life exceeding 2000 h and maintained a Coulombic efficiency of over 99.6%after 2000 cycles.Additionally,the performance of the Zn||ZVO full battery was significantly enhanced with the addition of PBTCA.This study provides a simple,low-cost,and efficient approach for making the seawater-based zinc-ion batteries useable.
基金
the National Key Research and Development Program of China (Nos.2022YFB2404500 and 2021YFF0500600)
the National Natural Science Foundation of China (Nos.52172223,52272230,52302300)
the China Postdoctoral Science Foundation (No.2022M722361)。