期刊文献+

基于改进量子粒子群算法的新能源汽车换电站优化布局

Optimized Layout of New Energy Vehicle Changing Station Based on Improved Quantum Particle Swarm Optimization
下载PDF
导出
摘要 为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换电距离为约束条件。同时利用改进的量子粒子群算法对模型求解,算法引入自适应调整的惯性权重,提高粒子的整体搜索能力,利用Logistic混沌映射初始化种群信息,提升种群的遍历性,通过Levy飞行策略与Cauchy变异策略,提升种群的多样性并扩大算法在迭代过程中的搜索空间,进一步提升算法的全局搜索能力并快速跳出局部最优区域。利用该算法对长春市宽城区进行实际规划,将该区域相关数据引入建立的数学模型,确定了该区域内建设四座换电站时符合预期建设目标,同时确定各电站建设位置及容量,证明研究结果的可行性与实用性。 To address the issues related to the construction of battery swapping stations during the development and popularization process of new energy battery-swapping vehicles,an optimization mathematical model with the goal of minimizing the average annual comprehensive cost over the operational target years of the swapping stations was established.The model comprehensively considered factors such as land price,construction cost,operational cost,maintenance cost,road traffic flow,and service capacity,with battery swapping capacity and distance as constraints.Additionally,an improved quantum particle swarm optimization algorithm was utilized to solve the model.The algorithm introduced an adaptive adjustment of inertia weight to enhance the overall search capability of the particles.It employed Logistic chaotic mapping to initialize population information,improving the population's travers ability.Through Levy flight strategy and Cauchy mutation strategy,the diversity of the population was increased,and the search space in the iteration process was expanded,further enhancing the global search capability of the algorithm and enabling it to quickly escape from local optima.This algorithm is applied to the actual planning of Kuancheng District of Changchun City,and the relevant data of this area is introduced into the established mathematical model.It is determined that the construction of four power conversion stations in this area meets the construction objectives.Meanwhile,the construction location and capacity of each power station are determined,which proves the feasibility and practicability of the method mentioned.
作者 韩顺杰 于渲铎 李东奇 董吉哲 HAN Shun-jie;YU Xuan-duo;LI Dong-qi;DONG Ji-zhe(School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 135000,China)
出处 《科学技术与工程》 北大核心 2024年第27期11720-11725,共6页 Science Technology and Engineering
基金 吉林省自然科学基金(20210101087JC)。
关键词 新能源汽车 改进量子粒子群算法 换电站 选址定容 new energy vehicles improved quantum particle swarm optimization changing power station location and capacity determination
  • 相关文献

参考文献12

二级参考文献128

共引文献220

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部