期刊文献+

CNN-LSTM车辆运动状态识别的AUKF组合导航方法

AUKF integrated navigation method based on CNN-LSTM vehicle motion state recognition
下载PDF
导出
摘要 针对固定的噪声协方差难以适应车辆不同运动行为下噪声统计特性差异大的问题,提出了一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)的车辆运动状态识别自适应无迹卡尔曼滤波(AUKF)组合导航方法。首先,应用CNN-LSTM网络模型进行车辆运动状态识别,解决车辆自我运动不确定性的问题;其次,将特定运动状态约束下的噪声协方差应用于UKF的时间更新与量测更新;最后,将所提方法在采集的数据集上进行验证。实验结果表明,与经典的UKF算法相比,所提方法的位置均方根误差与速度均方根误差分别下降了22.67%与2.63%,验证了所提方法的有效性。 Aiming at the problem that the fixed noise covariance is difficult to adapt to the large difference of noise statistical characteristics under different movement behaviors of vehicles,an adaptive unscented Kalman filter(AUKF)integrated navigation method based on convolutional neural network and long short-term memory network(CNN-LSTM)for vehicle motion state recognition is proposed.Firstly,the CNN-LSTM network is employed to discern the vehicle motion state,addressing inherent uncertainties in self-motion.Secondly,noise covariance under specific motion state constraints is incorporated into both the time and measurement updates of the UKF.Finally,the proposed method is validated on the collected data set.Experimental results show that compared with the classical UKF algorithm,the root mean square error of position and velocity for the proposed method are reduced by 22.67% and 2.63%,respectively,which verifies its effectiveness.
作者 刘宁 谢越栋 胡彬 范军芳 苏中 LIU Ning;XIE Yuedong;HU Bin;Fan Junfang;SU Zhong(Beijing Key Laboratory of High Dynamic Navigation Technology,Beijing Information Science and Technology University,Beijing 100192,China;Key Laboratory of Modern Measurement and Control Technology of Ministry of Education,Beijing Information Science and Technology University,Beijing 100192,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2024年第8期803-811,共9页 Journal of Chinese Inertial Technology
基金 北京市自然科学基金面上项目(4244091) 国家重点研发计划课题(2020YFC1511702) 北京市科技新星计划交叉学科合作课题(202111)资助 现代测控技术教育部重点实验室开放课题资助。
关键词 组合导航 车辆运动状态识别 组合神经网络 自适应无迹卡尔曼滤波 噪声协方差 integrated navigation vehicle motion state recognition combined neural network adaptive unscented Kalman filter noise covariance
  • 相关文献

参考文献6

二级参考文献41

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部