期刊文献+

人工智能下的电站通信网络故障诊断与优化方法研究

Research on Fault Diagnosis and Optimization Methods for Power Station Communication Network under Artificial Intelligence
下载PDF
导出
摘要 为了实现电站通信网络故障快速定位,本文设计了一种基于卷积神经网络(Convolutional Neural Network,CNN)的电站通信网络故障诊断系统。本研究通过故障诊断系统的模型结构和可视化功能模块的设计,阐述了模型和故障诊断可视化的关键技术和流程,搭建并优化系统实现环境。最后文章所提出的模型与基线方法进行比较,证明所提出模型在精度等各个指标中均表现优异。系统可以利用基于CNN的故障诊断算法快速定位和诊断网络故障,实现网络拓扑的可视化过程和故障诊断。 In order to realize the rapid location of power station communication network faults,this paper designs a fault diagnosis system for power plant communication networks based on Convolutional Neural Networks(CNN).Designed the model structure and visualization module of the fault diagnosis system,elaborated on the key technologies and processes for model implementation and fault diagnosis visualization,and built and optimized the system implementation environment.Finally,the overall operation of the system was introduced and demonstrated.The system proposed in this article can use CNN based fault diagnosis algorithms to quickly locate and diagnose network faults,realizing the visualization process of network topology and fault diagnosis process.It supports the management and classification of different networks,and has advantages such as efficiency and flexibility.
作者 梁敬鑫 LIANG Jingxin(Huadian Fuxin Zhouning Pumped Storage Energy Co.,Ltd.,Lianjiang Fujian 355400,China)
出处 《信息与电脑》 2024年第12期182-184,共3页 Information & Computer
关键词 网络拓扑 网络管理 卷积神经网络 故障诊断 可视化 network topology network management convolutional neural networks fault diagnosis visualization
  • 相关文献

参考文献5

二级参考文献68

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部